A metal-organic-framework incorporated vascular graft for sustained nitric oxide generation and long-term vascular patency

静电纺丝 聚己内酯 催化作用 一氧化氮 医学 化学 纳米颗粒 材料科学 生物医学工程 纳米技术 生物化学 有机化学 聚合物
作者
Xiangyun Zhang,Yuanbo Wang,Jing Liu,Jie Shi,Duo Mao,Adam C. Midgley,Xigang Leng,Deling Kong,Zhihong Wang,Bin Liu,Shufang Wang
出处
期刊:Chemical Engineering Journal [Elsevier BV]
卷期号:421: 129577-129577 被引量:50
标识
DOI:10.1016/j.cej.2021.129577
摘要

Copper-MOFs (Cu-MOFs) have been reported to demonstrate great potential as cardiovascular biomaterials, due to enhanced catalytic ability of Cu2+ to generate nitric oxide (NO) from endogenous S-nitrosothiols (RSNOs). However, free Cu-MOFs usually show rapid degradation under physiological conditions, resulting in short catalytic half-life and risk of copper ion toxicity. Therefore, how to increase the stability of Cu-MOFs is of great importance in cardiovascular biomaterials research. Herein, we chose M199 MOF as an example and developed Cu-MOF-based scaffold, using the electrospinning method to embed Cu-MOF nanoparticles into polycaprolactone (PCL) fibers. Entrapment of Cu-MOF nanoparticles within PCL could simultaneously enhance Cu-MOF stability in serum and allow for long-term NO catalytic activity, as assessed by in vitro assays and using in situ implantation models. Additionally, the optimized concentration of Cu-MOFs loaded within the scaffolds significantly promoted endothelial cell (EC) migration and increased acetylated low-density lipoprotein (Ac-LDL) uptake. Moreover, Cu-MOF-based scaffolds dramatically inhibited platelet adhesion and activation, which markedly reduced acute thrombosis in arterio-venous shunt models. In situ implantation experiments revealed that the PCL/Cu-MOF scaffolds accelerated the formation of an intact endothelial monolayer. Together, these results suggest that the incorporation of Cu-MOFs into electrospun fibers could serve as a promising approach to achieve stable catalytic performance and long-term activity required for implant materials.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
2秒前
丘比特应助zhangsudi采纳,获得30
3秒前
风之子完成签到,获得积分10
4秒前
科研通AI5应助yuminger采纳,获得10
4秒前
冰魂应助zrx07288采纳,获得20
4秒前
5秒前
5秒前
5秒前
汤圆完成签到,获得积分10
6秒前
7秒前
NexusExplorer应助求知的周采纳,获得200
7秒前
昏睡的蟠桃应助豪豪采纳,获得200
8秒前
8秒前
vivi发布了新的文献求助10
8秒前
8秒前
英姑应助科研通管家采纳,获得10
9秒前
10秒前
华仔应助科研通管家采纳,获得10
10秒前
emon发布了新的文献求助10
10秒前
李爱国应助科研通管家采纳,获得10
10秒前
Ava应助科研通管家采纳,获得10
10秒前
科研通AI5应助科研通管家采纳,获得10
10秒前
科研通AI2S应助科研通管家采纳,获得10
10秒前
xx发布了新的文献求助10
10秒前
顾矜应助科研通管家采纳,获得10
10秒前
田様应助科研通管家采纳,获得10
10秒前
李健应助科研通管家采纳,获得10
10秒前
酷波er应助科研通管家采纳,获得10
10秒前
天天快乐应助科研通管家采纳,获得10
10秒前
科目三应助科研通管家采纳,获得10
10秒前
10秒前
Orange应助科研通管家采纳,获得10
10秒前
Orange应助科研通管家采纳,获得30
11秒前
wx发布了新的文献求助10
11秒前
桐桐应助科研通管家采纳,获得10
11秒前
11秒前
小白应助科研通管家采纳,获得10
11秒前
科研通AI5应助科研通管家采纳,获得10
11秒前
bkagyin应助科研通管家采纳,获得10
11秒前
bkagyin应助科研通管家采纳,获得10
11秒前
高分求助中
Encyclopedia of Mathematical Physics 2nd edition 888
Introduction to Strong Mixing Conditions Volumes 1-3 500
Tip60 complex regulates eggshell formation and oviposition in the white-backed planthopper, providing effective targets for pest control 400
Optical and electric properties of monocrystalline synthetic diamond irradiated by neutrons 320
共融服務學習指南 300
Essentials of Pharmacoeconomics: Health Economics and Outcomes Research 3rd Edition. by Karen Rascati 300
Peking Blues // Liao San 300
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3801824
求助须知:如何正确求助?哪些是违规求助? 3347627
关于积分的说明 10334518
捐赠科研通 3063778
什么是DOI,文献DOI怎么找? 1682083
邀请新用户注册赠送积分活动 807911
科研通“疑难数据库(出版商)”最低求助积分说明 763969