肥料
流出物
抗生素
流动遗传元素
抗生素耐药性
土霉素
生物
兽医学
生物技术
生态学
微生物学
医学
基因
环境工程
环境科学
遗传学
质粒
作者
Yuan Wei,Xiangpeng Zeng,Yu Cao,Qingxiang Yang,Luqman Riaz,Qiang Wang
标识
DOI:10.1016/j.envpol.2021.118512
摘要
Antibiotic resistance is a growing problem for ecosystem health and public healthcare. Hence, the transmission of antibiotic resistance from human and animal origins to natural environments requires careful investigation. In this study, nine antibiotic resistance genes (ARGs), three mobile genetic elements (MGEs), and their relations with antibiotics, heavy metals, and microbiota were investigated in 16 sample sites (Xinxiang, China). Fluoroquinolones (0.13-14.22 μg/L) were most abundant in hospital effluent and oxytetracycline (251.86-5817.47 μg/kg) in animal manure. Animal manure showed the highest levels of zinc (80.79-2597.14 mg/kg) and copper (32.47-85.22 mg/kg), possibly affecting the prevalence of intI1 and aac(6')-Ib genes. Aminoglycoside and sulfonamide resistance genes (aac(6')-Ib, aadA, and sul1) were the main ARGs in this area. In addition, the detected ARGs and MGEs were higher in animal manure than in hospital effluent, except for the sul1 gene. On the other hand, the incomplete removal of antibiotics (29.76-100%), heavy metals (31.25-100%), and ARGs (1-3 orders of magnitude) in MWWTPs resulted in the accumulation of these contaminants in the receiving river. Network analysis suggested that the potential hosts (Jeotgalibaca, Atopostipes, Corynebacterium_1, etc.) of ARGs were more predominant in animal manure rather than hospital effluent, indicating a higher ARG transfer potential in animal manure compared with hospital sources. These results provide useful insights into the different migration and dissemination routes of antibiotics, heavy metals, ARGs, and microbiota from anthropogenic and animal origins to their receiving environments via MWWTP discharge and manure fertilization.
科研通智能强力驱动
Strongly Powered by AbleSci AI