A high-performance aqueous rechargeable zinc battery based on organic cathode integrating quinone and pyrazine

电化学 阴极 法拉第效率 吡嗪 材料科学 电池(电) 水溶液 化学工程 电极 纳米技术 物理化学 有机化学 化学 功率(物理) 冶金 工程类 物理 量子力学
作者
Yingjie Gao,Gaofeng Li,Feng Wang,Jun Chu,Yu Pu,Baoshan Wang,Hui Zhan,Zhiping Song
出处
期刊:Energy Storage Materials [Elsevier BV]
卷期号:40: 31-40 被引量:207
标识
DOI:10.1016/j.ensm.2021.05.002
摘要

In spite of the recent rapid progress of organic cathode materials for aqueous rechargeable zinc batteries (ARZBs), there are still many challenges such as unaffordable synthesis, unsatisfactory electrochemical performance, and unclear mechanisms in this field. Herein, we report 5,7,12,14-tetraaza-6,13-pentacenequinone (TAPQ) as an easily-synthesized organic cathode material with a novel quinone/pyrazine hybrid structure. Benefitting from the multiple electroactive C=O and C=N bonds, TAPQ possessed a theoretical capacity of 515 mAh g–1 (based on a six-electron reaction) and a practically reversible capacity of 443 mAh g–1 within 0.1–1.6 V vs. Zn2+/Zn, both of which set new records for organic cathodes in ARZBs. The H+/Zn2+ co-insertion mechanism involving H+ as the predominant participant was confirmed by detailed investigations including various ex-situ characterizations, electrochemical tests, and DFT calculations. Based on the clear mechanism understanding, a modified voltage range of 0.5–1.6 V was adopted to simultaneously achieve high energy density (270 mAh g–1 × 0.84 V = 227 Wh kg–1) and excellent cycling stability (capacity retention of 92% after 250 cycles under 50 mA g–1, with an average Coulombic efficiency of 99.96%). Furthermore, the evolution mechanism of TAPQ electrode structure during cycling was also carefully studied to reveal the origin of capacity decline. The novel molecular structure, easy synthesis, superior electrochemical performance, and deeper mechanism understanding provide researchers important insights into the further development of organic cathode materials for ARZBs toward practical applications.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
煲煲煲仔饭完成签到 ,获得积分10
1秒前
jinjinjin发布了新的文献求助10
2秒前
louqinyuan完成签到,获得积分10
2秒前
橘子给橘子的求助进行了留言
2秒前
2秒前
2秒前
3秒前
NoTemper发布了新的文献求助10
3秒前
Akim应助nine采纳,获得10
5秒前
winnie_ymq完成签到 ,获得积分10
5秒前
5秒前
缥缈的南风完成签到,获得积分10
6秒前
ShellyMaya完成签到 ,获得积分10
6秒前
6秒前
7秒前
ling361发布了新的文献求助10
8秒前
8秒前
正义的伙伴完成签到,获得积分20
8秒前
8秒前
9秒前
9秒前
西瓜妹完成签到,获得积分10
9秒前
华仔应助渔舟唱晚采纳,获得10
10秒前
10秒前
10秒前
10秒前
万能图书馆应助默存采纳,获得10
10秒前
坦率的匪应助是苗苗丫采纳,获得20
10秒前
xm发布了新的文献求助10
11秒前
科目三应助Kristy采纳,获得10
11秒前
11秒前
小白发布了新的文献求助10
12秒前
jinjinjin完成签到,获得积分10
12秒前
早上好给早上好的求助进行了留言
12秒前
kekkekh欧克发布了新的文献求助10
12秒前
felix发布了新的文献求助10
12秒前
Xenogenesis完成签到,获得积分10
13秒前
喵呜发布了新的文献求助10
13秒前
15秒前
科研小怪兽应助拓跋听南采纳,获得20
15秒前
高分求助中
(禁止应助)【重要!!请各位详细阅读】【科研通的精品贴汇总】 10000
Functional High Entropy Alloys and Compounds 1000
Building Quantum Computers 1000
Molecular Cloning: A Laboratory Manual (Fourth Edition) 500
Social Epistemology: The Niches for Knowledge and Ignorance 500
优秀运动员运动寿命的人文社会学因素研究 500
Principles of Plasma Discharges and Materials Processing,3rd Edition 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 4238921
求助须知:如何正确求助?哪些是违规求助? 3772675
关于积分的说明 11847956
捐赠科研通 3428534
什么是DOI,文献DOI怎么找? 1881611
邀请新用户注册赠送积分活动 933811
科研通“疑难数据库(出版商)”最低求助积分说明 840575