A high-performance aqueous rechargeable zinc battery based on organic cathode integrating quinone and pyrazine

电化学 阴极 法拉第效率 吡嗪 材料科学 电池(电) 水溶液 化学工程 电极 纳米技术 物理化学 有机化学 化学 功率(物理) 物理 量子力学 工程类 冶金
作者
Yingjie Gao,Gaofeng Li,Feng Wang,Jun Chu,Pu Yu,Baoshan Wang,Hui Zhan,Zhiping Song
出处
期刊:Energy Storage Materials [Elsevier]
卷期号:40: 31-40 被引量:117
标识
DOI:10.1016/j.ensm.2021.05.002
摘要

In spite of the recent rapid progress of organic cathode materials for aqueous rechargeable zinc batteries (ARZBs), there are still many challenges such as unaffordable synthesis, unsatisfactory electrochemical performance, and unclear mechanisms in this field. Herein, we report 5,7,12,14-tetraaza-6,13-pentacenequinone (TAPQ) as an easily-synthesized organic cathode material with a novel quinone/pyrazine hybrid structure. Benefitting from the multiple electroactive C=O and C=N bonds, TAPQ possessed a theoretical capacity of 515 mAh g–1 (based on a six-electron reaction) and a practically reversible capacity of 443 mAh g–1 within 0.1–1.6 V vs. Zn2+/Zn, both of which set new records for organic cathodes in ARZBs. The H+/Zn2+ co-insertion mechanism involving H+ as the predominant participant was confirmed by detailed investigations including various ex-situ characterizations, electrochemical tests, and DFT calculations. Based on the clear mechanism understanding, a modified voltage range of 0.5–1.6 V was adopted to simultaneously achieve high energy density (270 mAh g–1 × 0.84 V = 227 Wh kg–1) and excellent cycling stability (capacity retention of 92% after 250 cycles under 50 mA g–1, with an average Coulombic efficiency of 99.96%). Furthermore, the evolution mechanism of TAPQ electrode structure during cycling was also carefully studied to reveal the origin of capacity decline. The novel molecular structure, easy synthesis, superior electrochemical performance, and deeper mechanism understanding provide researchers important insights into the further development of organic cathode materials for ARZBs toward practical applications.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
橙子发布了新的文献求助10
1秒前
斯文败类应助青栀采纳,获得10
2秒前
cctv18给程风破浪的求助进行了留言
2秒前
cff发布了新的文献求助10
3秒前
桐桐应助Long采纳,获得10
3秒前
逢场作戱____完成签到 ,获得积分10
3秒前
Pericles完成签到,获得积分10
4秒前
北大博士小谭给北大博士小谭的求助进行了留言
4秒前
妍yan完成签到,获得积分10
5秒前
5秒前
杨洋完成签到,获得积分10
8秒前
所所应助haroro采纳,获得10
11秒前
晓晓发布了新的文献求助10
12秒前
fm发布了新的文献求助10
13秒前
14秒前
策策策策策完成签到 ,获得积分10
16秒前
18秒前
香蕉觅云应助奋斗的芹菜采纳,获得10
20秒前
长情的小虾米完成签到,获得积分10
20秒前
21秒前
星辰大海应助xxyqddx采纳,获得10
21秒前
ZQZ完成签到,获得积分10
25秒前
cctv18应助长情的小虾米采纳,获得30
25秒前
橙子完成签到,获得积分10
27秒前
28秒前
29秒前
30秒前
英俊的铭应助fm采纳,获得10
31秒前
Yxy发布了新的文献求助80
32秒前
小二郎应助晓晓采纳,获得10
33秒前
strawberry发布了新的文献求助10
34秒前
清塘夜谈发布了新的文献求助10
36秒前
啦啦啦啦啦完成签到 ,获得积分10
36秒前
37秒前
xxyqddx发布了新的文献求助10
38秒前
40秒前
碧蓝的自行车完成签到,获得积分10
40秒前
何博完成签到,获得积分10
41秒前
追寻飞风完成签到,获得积分10
41秒前
高分求助中
Manual of Clinical Microbiology, 4 Volume Set (ASM Books) 13th Edition 1000
Teaching Social and Emotional Learning in Physical Education 900
Boris Pesce - Gli impiegati della Fiat dal 1955 al 1999 un percorso nella memoria 500
Chinese-English Translation Lexicon Version 3.0 500
Recherches Ethnographiques sue les Yao dans la Chine du Sud 500
Two-sample Mendelian randomization analysis reveals causal relationships between blood lipids and venous thromboembolism 500
[Lambert-Eaton syndrome without calcium channel autoantibodies] 460
热门求助领域 (近24小时)
化学 材料科学 医学 生物 有机化学 工程类 生物化学 纳米技术 物理 内科学 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 电极 光电子学 量子力学
热门帖子
关注 科研通微信公众号,转发送积分 2397069
求助须知:如何正确求助?哪些是违规求助? 2098986
关于积分的说明 5290579
捐赠科研通 1826614
什么是DOI,文献DOI怎么找? 910582
版权声明 560023
科研通“疑难数据库(出版商)”最低求助积分说明 486752