Use of Machine Learning to Develop and Evaluate Models Using Preoperative and Intraoperative Data to Identify Risks of Postoperative Complications

医学 深静脉 围手术期 接收机工作特性 队列 肺栓塞 回顾性队列研究 逻辑回归 外科 血栓形成 内科学
作者
Bing Xue,Dingwen Li,Chenyang Lu,Christopher R. King,Troy S. Wildes,Michael S. Avidan,Thomas Kannampallil,Joanna Abraham
出处
期刊:JAMA network open [American Medical Association]
卷期号:4 (3): e212240-e212240 被引量:203
标识
DOI:10.1001/jamanetworkopen.2021.2240
摘要

Importance

Postoperative complications can significantly impact perioperative care management and planning.

Objectives

To assess machine learning (ML) models for predicting postoperative complications using independent and combined preoperative and intraoperative data and their clinically meaningful model-agnostic interpretations.

Design, Setting, and Participants

This retrospective cohort study assessed 111 888 operations performed on adults at a single academic medical center from June 1, 2012, to August 31, 2016, with a mean duration of follow-up based on the length of postoperative hospital stay less than 7 days. Data analysis was performed from February 1 to September 31, 2020.

Main Outcomes and Measures

Outcomes included 5 postoperative complications: acute kidney injury (AKI), delirium, deep vein thrombosis (DVT), pulmonary embolism (PE), and pneumonia. Patient and clinical characteristics available preoperatively, intraoperatively, and a combination of both were used as inputs for 5 candidate ML models: logistic regression, support vector machine, random forest, gradient boosting tree (GBT), and deep neural network (DNN). Model performance was compared using the area under the receiver operating characteristic curve (AUROC). Model interpretations were generated using Shapley Additive Explanations by transforming model features into clinical variables and representing them as patient-specific visualizations.

Results

A total of 111 888 patients (mean [SD] age, 54.4 [16.8] years; 56 915 [50.9%] female; 82 533 [73.8%] White) were included in this study. The best-performing model for each complication combined the preoperative and intraoperative data with the following AUROCs: pneumonia (GBT), 0.905 (95% CI, 0.903-0.907); AKI (GBT), 0.848 (95% CI, 0.846-0.851); DVT (GBT), 0.881 (95% CI, 0.878-0.884); PE (DNN), 0.831 (95% CI, 0.824-0.839); and delirium (GBT), 0.762 (95% CI, 0.759-0.765). Performance of models that used only preoperative data or only intraoperative data was marginally lower than that of models that used combined data. When adding variables with missing data as input, AUROCs increased from 0.588 to 0.905 for pneumonia, 0.579 to 0.848 for AKI, 0.574 to 0.881 for DVT, 0.5 to 0.831 for PE, and 0.6 to 0.762 for delirium. The Shapley Additive Explanations analysis generated model-agnostic interpretation that illustrated significant clinical contributors associated with risks of postoperative complications.

Conclusions and Relevance

The ML models for predicting postoperative complications with model-agnostic interpretation offer opportunities for integrating risk predictions for clinical decision support. Such real-time clinical decision support can mitigate patient risks and help in anticipatory management for perioperative contingency planning.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
wzyyyyue完成签到,获得积分10
刚刚
完美世界应助adydcm采纳,获得10
1秒前
watank发布了新的文献求助10
2秒前
2秒前
2秒前
年华完成签到 ,获得积分10
3秒前
科研王发布了新的文献求助10
6秒前
jenningseastera应助WYQ采纳,获得10
6秒前
9秒前
圣晟胜完成签到,获得积分10
10秒前
13秒前
orixero应助tooty采纳,获得10
13秒前
suda完成签到,获得积分10
13秒前
1523完成签到 ,获得积分10
14秒前
14秒前
酷炫的凤妖完成签到 ,获得积分10
14秒前
15秒前
不败皇族461X完成签到,获得积分20
15秒前
16秒前
共享精神应助meizi采纳,获得10
16秒前
悟道希垚发布了新的文献求助10
17秒前
WYQ发布了新的文献求助10
18秒前
watank完成签到,获得积分10
18秒前
19秒前
一一应助hui采纳,获得10
19秒前
22秒前
HJJHJH发布了新的文献求助10
22秒前
深情未来完成签到,获得积分10
22秒前
万能图书馆应助22采纳,获得10
22秒前
25秒前
25秒前
完美的妙芹完成签到,获得积分10
25秒前
26秒前
Wang完成签到,获得积分10
26秒前
我是老大应助22222采纳,获得10
27秒前
meizi发布了新的文献求助10
28秒前
量子星尘发布了新的文献求助10
29秒前
力量发布了新的文献求助10
30秒前
30秒前
CodeCraft应助linyue采纳,获得10
32秒前
高分求助中
【提示信息,请勿应助】请使用合适的网盘上传文件 10000
Continuum Thermodynamics and Material Modelling 2000
The Oxford Encyclopedia of the History of Modern Psychology 1500
Green Star Japan: Esperanto and the International Language Question, 1880–1945 800
Sentimental Republic: Chinese Intellectuals and the Maoist Past 800
The Martian climate revisited: atmosphere and environment of a desert planet 800
Learning to Listen, Listening to Learn 520
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3867218
求助须知:如何正确求助?哪些是违规求助? 3409493
关于积分的说明 10663865
捐赠科研通 3133679
什么是DOI,文献DOI怎么找? 1728374
邀请新用户注册赠送积分活动 832984
科研通“疑难数据库(出版商)”最低求助积分说明 780514