亲爱的研友该休息了!由于当前在线用户较少,发布求助请尽量完整地填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!身体可是革命的本钱,早点休息,好梦!

Use of Machine Learning to Develop and Evaluate Models Using Preoperative and Intraoperative Data to Identify Risks of Postoperative Complications

医学 深静脉 围手术期 接收机工作特性 队列 肺栓塞 回顾性队列研究 逻辑回归 外科 血栓形成 内科学
作者
Bing Xue,Dingwen Li,Chenyang Lu,Christopher R. King,Troy S. Wildes,Michael S. Avidan,Thomas Kannampallil,Joanna Abraham
出处
期刊:JAMA network open [American Medical Association]
卷期号:4 (3): e212240-e212240 被引量:235
标识
DOI:10.1001/jamanetworkopen.2021.2240
摘要

Importance

Postoperative complications can significantly impact perioperative care management and planning.

Objectives

To assess machine learning (ML) models for predicting postoperative complications using independent and combined preoperative and intraoperative data and their clinically meaningful model-agnostic interpretations.

Design, Setting, and Participants

This retrospective cohort study assessed 111 888 operations performed on adults at a single academic medical center from June 1, 2012, to August 31, 2016, with a mean duration of follow-up based on the length of postoperative hospital stay less than 7 days. Data analysis was performed from February 1 to September 31, 2020.

Main Outcomes and Measures

Outcomes included 5 postoperative complications: acute kidney injury (AKI), delirium, deep vein thrombosis (DVT), pulmonary embolism (PE), and pneumonia. Patient and clinical characteristics available preoperatively, intraoperatively, and a combination of both were used as inputs for 5 candidate ML models: logistic regression, support vector machine, random forest, gradient boosting tree (GBT), and deep neural network (DNN). Model performance was compared using the area under the receiver operating characteristic curve (AUROC). Model interpretations were generated using Shapley Additive Explanations by transforming model features into clinical variables and representing them as patient-specific visualizations.

Results

A total of 111 888 patients (mean [SD] age, 54.4 [16.8] years; 56 915 [50.9%] female; 82 533 [73.8%] White) were included in this study. The best-performing model for each complication combined the preoperative and intraoperative data with the following AUROCs: pneumonia (GBT), 0.905 (95% CI, 0.903-0.907); AKI (GBT), 0.848 (95% CI, 0.846-0.851); DVT (GBT), 0.881 (95% CI, 0.878-0.884); PE (DNN), 0.831 (95% CI, 0.824-0.839); and delirium (GBT), 0.762 (95% CI, 0.759-0.765). Performance of models that used only preoperative data or only intraoperative data was marginally lower than that of models that used combined data. When adding variables with missing data as input, AUROCs increased from 0.588 to 0.905 for pneumonia, 0.579 to 0.848 for AKI, 0.574 to 0.881 for DVT, 0.5 to 0.831 for PE, and 0.6 to 0.762 for delirium. The Shapley Additive Explanations analysis generated model-agnostic interpretation that illustrated significant clinical contributors associated with risks of postoperative complications.

Conclusions and Relevance

The ML models for predicting postoperative complications with model-agnostic interpretation offer opportunities for integrating risk predictions for clinical decision support. Such real-time clinical decision support can mitigate patient risks and help in anticipatory management for perioperative contingency planning.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
lijunliang完成签到,获得积分10
22秒前
可可完成签到 ,获得积分10
38秒前
努力努力再努力完成签到,获得积分10
46秒前
wodetaiyangLLL完成签到 ,获得积分10
56秒前
科研通AI2S应助科研通管家采纳,获得10
59秒前
MchemG应助科研通管家采纳,获得10
59秒前
MchemG应助科研通管家采纳,获得10
59秒前
59秒前
1分钟前
Davy_Y发布了新的文献求助10
1分钟前
Davy_Y完成签到,获得积分10
1分钟前
1分钟前
缓慢的灵枫完成签到 ,获得积分10
1分钟前
zhouxiuman完成签到,获得积分10
1分钟前
qqJing完成签到,获得积分10
2分钟前
馆长应助哈贝喵采纳,获得20
2分钟前
Ava应助eurus采纳,获得10
2分钟前
2分钟前
2分钟前
eurus发布了新的文献求助10
2分钟前
Evian79167应助馆长采纳,获得10
2分钟前
xybjt完成签到 ,获得积分10
2分钟前
2分钟前
超级白玉发布了新的文献求助10
3分钟前
tomatokkkk完成签到,获得积分10
3分钟前
于飞完成签到,获得积分10
3分钟前
3分钟前
mingjiang完成签到,获得积分10
3分钟前
mingjiang发布了新的文献求助10
3分钟前
Ephemerality完成签到 ,获得积分10
4分钟前
4分钟前
华仔应助纯白采纳,获得10
4分钟前
4分钟前
flyinthesky完成签到,获得积分10
4分钟前
4分钟前
纯白发布了新的文献求助10
4分钟前
HC完成签到,获得积分10
4分钟前
馆长举报核桃求助涉嫌违规
4分钟前
李健应助纯白采纳,获得10
4分钟前
张晓祁完成签到,获得积分10
4分钟前
高分求助中
(应助此贴封号)【重要!!请各位详细阅读】【科研通的精品贴汇总】 10000
Les Mantodea de Guyane: Insecta, Polyneoptera [The Mantids of French Guiana] 3000
F-35B V2.0 How to build Kitty Hawk's F-35B Version 2.0 Model 2500
줄기세포 생물학 1000
The Netter Collection of Medical Illustrations: Digestive System, Volume 9, Part III - Liver, Biliary Tract, and Pancreas (3rd Edition) 600
INQUIRY-BASED PEDAGOGY TO SUPPORT STEM LEARNING AND 21ST CENTURY SKILLS: PREPARING NEW TEACHERS TO IMPLEMENT PROJECT AND PROBLEM-BASED LEARNING 500
2025-2031全球及中国蛋黄lgY抗体行业研究及十五五规划分析报告(2025-2031 Global and China Chicken lgY Antibody Industry Research and 15th Five Year Plan Analysis Report) 400
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 4484295
求助须知:如何正确求助?哪些是违规求助? 3940156
关于积分的说明 12220237
捐赠科研通 3595574
什么是DOI,文献DOI怎么找? 1977385
邀请新用户注册赠送积分活动 1014440
科研通“疑难数据库(出版商)”最低求助积分说明 907610