ProtTrans: Towards Cracking the Language of Life’s Code Through Self-Supervised Learning

计算机科学 人工智能 降维 推论 编码器 机器学习 自然语言处理 操作系统
作者
Ahmed Elnaggar,Michael Heinzinger,Christian Dallago,Ghalia Rehawi,Yu Wang,Llion Jones,Tom Gibbs,T. Fehér,Christoph Angerer,Martin Steinegger,Debsindhu Bhowmik,Burkhard Rost
标识
DOI:10.1101/2020.07.12.199554
摘要

Abstract Computational biology and bioinformatics provide vast data gold-mines from protein sequences, ideal for Language Models taken from NLP. These LMs reach for new prediction frontiers at low inference costs. Here, we trained two auto-regressive models (Transformer-XL, XLNet) and four auto-encoder models (BERT, Albert, Electra, T5) on data from UniRef and BFD containing up to 393 billion amino acids. The LMs were trained on the Summit supercomputer using 5616 GPUs and TPU Pod up-to 1024 cores. Dimensionality reduction revealed that the raw protein LM- embeddings from unlabeled data captured some biophysical features of protein sequences. We validated the advantage of using the embeddings as exclusive input for several subsequent tasks. The first was a per-residue prediction of protein secondary structure (3-state accuracy Q3=81%-87%); the second were per-protein predictions of protein sub-cellular localization (ten-state accuracy: Q10=81%) and membrane vs. water-soluble (2-state accuracy Q2=91%). For the per-residue predictions the transfer of the most informative embeddings (ProtT5) for the first time outperformed the state-of-the-art without using evolutionary information thereby bypassing expensive database searches. Taken together, the results implied that protein LMs learned some of the grammar of the language of life . To facilitate future work, we released our models at https://github.com/agemagician/ProtTrans .
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
1秒前
2秒前
传奇3应助jitianxing采纳,获得10
2秒前
CodeCraft应助南边的海采纳,获得10
3秒前
liu完成签到 ,获得积分10
4秒前
5秒前
缓慢如南发布了新的文献求助10
6秒前
赘婿应助雪上一枝蒿采纳,获得10
9秒前
飘逸的傲霜完成签到,获得积分10
9秒前
数据线应助molingyue采纳,获得50
10秒前
10秒前
小蘑菇应助李文龙采纳,获得10
11秒前
12秒前
龙龙ff11_发布了新的文献求助10
13秒前
英俊的铭应助shine采纳,获得10
16秒前
科研通AI5应助和谐小鸭子采纳,获得30
17秒前
LL发布了新的文献求助10
18秒前
nancy93228完成签到 ,获得积分10
19秒前
19秒前
21秒前
22秒前
李鱼丸发布了新的文献求助10
23秒前
24秒前
asdf完成签到,获得积分10
24秒前
MrX发布了新的文献求助10
25秒前
asdf发布了新的文献求助10
27秒前
28秒前
研友_LNBW5L完成签到,获得积分10
28秒前
28秒前
28秒前
29秒前
无心的怜烟完成签到,获得积分10
29秒前
黑的白完成签到,获得积分10
31秒前
shine发布了新的文献求助10
34秒前
34秒前
34秒前
34秒前
小兔子完成签到 ,获得积分10
34秒前
张帅完成签到,获得积分10
35秒前
Akim应助云中雨采纳,获得10
35秒前
高分求助中
Ophthalmic Equipment Market by Devices(surgical: vitreorentinal,IOLs,OVDs,contact lens,RGP lens,backflush,diagnostic&monitoring:OCT,actorefractor,keratometer,tonometer,ophthalmoscpe,OVD), End User,Buying Criteria-Global Forecast to2029 2000
A new approach to the extrapolation of accelerated life test data 1000
Cognitive Neuroscience: The Biology of the Mind 1000
Technical Brochure TB 814: LPIT applications in HV gas insulated switchgear 1000
Nucleophilic substitution in azasydnone-modified dinitroanisoles 500
不知道标题是什么 500
A Preliminary Study on Correlation Between Independent Components of Facial Thermal Images and Subjective Assessment of Chronic Stress 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 3965327
求助须知:如何正确求助?哪些是违规求助? 3510649
关于积分的说明 11154320
捐赠科研通 3244935
什么是DOI,文献DOI怎么找? 1792731
邀请新用户注册赠送积分活动 874026
科研通“疑难数据库(出版商)”最低求助积分说明 804134