Image fusion meets deep learning: A survey and perspective

图像融合 计算机科学 深度学习 人工智能 透视图(图形) 自编码 特征提取 图像(数学) 计算机视觉 融合 机器学习 哲学 语言学
作者
Hao Zhang,Han Xu,Xin Tian,Junjun Jiang,Jiayi Ma
出处
期刊:Information Fusion [Elsevier BV]
卷期号:76: 323-336 被引量:503
标识
DOI:10.1016/j.inffus.2021.06.008
摘要

Image fusion, which refers to extracting and then combining the most meaningful information from different source images, aims to generate a single image that is more informative and beneficial for subsequent applications. The development of deep learning has promoted tremendous progress in image fusion, and the powerful feature extraction and reconstruction capabilities of neural networks make the fused results promising. Recently, several latest deep learning technologies have made image fusion explode, e.g., generative adversarial networks, autoencoder, etc. However, a comprehensive review and analysis of latest deep-learning methods in different fusion scenarios is lacking. To this end and in this survey, we first introduce the concept of image fusion, and classify the methods from the perspectives of the deep architectures adopted and fusion scenarios. Then, we review the state-of-the-art on the use of deep learning in various types of image fusion scenarios, including the digital photography image fusion, the multi-modal image fusion and the sharpening fusion. Subsequently, the evaluation for some representative methods in specific fusion tasks are performed qualitatively and quantitatively. Moreover, we briefly introduce several typical applications of image fusion, including photography visualization, RGBT object tracking, medical diagnosis, and remote sensing monitoring. Finally, we provide the conclusion, highlight the challenges in image fusion, and look forward to potential future research directions.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
1秒前
量子星尘发布了新的文献求助10
2秒前
学生物的橘子完成签到 ,获得积分10
3秒前
szbllc完成签到,获得积分10
4秒前
苹果王子6699完成签到 ,获得积分10
5秒前
搜集达人应助科研通管家采纳,获得10
6秒前
科研通AI2S应助科研通管家采纳,获得10
6秒前
冰魂应助科研通管家采纳,获得10
6秒前
CodeCraft应助科研通管家采纳,获得10
6秒前
无花果应助科研通管家采纳,获得10
6秒前
大个应助科研通管家采纳,获得10
6秒前
852应助科研通管家采纳,获得10
6秒前
CodeCraft应助科研通管家采纳,获得10
6秒前
乐乐应助科研通管家采纳,获得10
6秒前
6秒前
6秒前
7秒前
7秒前
1111发布了新的文献求助20
8秒前
11秒前
wanci应助孤僻采纳,获得10
11秒前
冰魂应助自然卷卷卷采纳,获得10
12秒前
宇文数学完成签到 ,获得积分10
12秒前
13秒前
英吉利25发布了新的文献求助10
13秒前
大个应助honeylaker采纳,获得10
15秒前
祝英台发布了新的文献求助10
16秒前
哆啦A梦完成签到,获得积分10
17秒前
18秒前
mayy0408完成签到,获得积分10
19秒前
丘比特应助June采纳,获得10
19秒前
20秒前
20秒前
非而者厚应助苹果王子6699采纳,获得10
21秒前
21秒前
科研通AI5应助文风杰采采纳,获得10
21秒前
mayy0408发布了新的文献求助10
22秒前
我有一只猫完成签到 ,获得积分10
23秒前
23秒前
高分求助中
【提示信息,请勿应助】请使用合适的网盘上传文件 10000
The Oxford Encyclopedia of the History of Modern Psychology 1500
Green Star Japan: Esperanto and the International Language Question, 1880–1945 800
Sentimental Republic: Chinese Intellectuals and the Maoist Past 800
The Martian climate revisited: atmosphere and environment of a desert planet 800
Parametric Random Vibration 800
Building Quantum Computers 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3865274
求助须知:如何正确求助?哪些是违规求助? 3407492
关于积分的说明 10654809
捐赠科研通 3131558
什么是DOI,文献DOI怎么找? 1727175
邀请新用户注册赠送积分活动 832169
科研通“疑难数据库(出版商)”最低求助积分说明 780188