亲爱的研友该休息了!由于当前在线用户较少,发布求助请尽量完整的填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!身体可是革命的本钱,早点休息,好梦!

Assessing red blood cell deformability from microscopy images using deep learning

生物医学工程 显微镜 红细胞 人工智能 生物物理学 计算机科学 材料科学 纳米技术 化学 病理 工程类 生物 医学 生物化学
作者
Erik S. Lamoureux,Emel Islamzada,Matthew V. J. Wiens,Kerryn Matthews,Simon P. Duffy,Hongshen Ma
出处
期刊:Lab on a Chip [Royal Society of Chemistry]
卷期号:22 (1): 26-39 被引量:37
标识
DOI:10.1039/d1lc01006a
摘要

Red blood cells (RBCs) must be highly deformable to transit through the microvasculature to deliver oxygen to tissues. The loss of RBC deformability resulting from pathology, natural aging, or storage in blood bags can impede the proper function of these cells. A variety of methods have been developed to measure RBC deformability, but these methods require specialized equipment, long measurement time, and highly skilled personnel. To address this challenge, we investigated whether a machine learning approach could be used to predict donor RBC deformability based on morphological features from single cell microscope images. We used the microfluidic ratchet device to sort RBCs based on deformability. Sorted cells are then imaged and used to train a deep learning model to classify RBC based image features related to cell deformability. This model correctly predicted deformability of individual RBCs with 81 ± 11% accuracy averaged across ten donors. Using this model to score the deformability of RBC samples was accurate to within 10.4 ± 6.8% of the value obtained using the microfluidic ratchet device. While machine learning methods are frequently developed to automate human image analysis, our study is remarkable in showing that deep learning of single cell microscopy images could be used to assess RBC deformability, a property not normally measurable by imaging. Measuring RBC deformability by imaging is also desirable because it can be performed rapidly using a standard microscopy system, potentially enabling RBC deformability studies to be performed as part of routine clinical assessments.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
慕青应助科研通管家采纳,获得10
17秒前
CodeCraft应助科研通管家采纳,获得10
17秒前
17秒前
25秒前
爱撒娇的沛凝完成签到 ,获得积分10
26秒前
咕咕完成签到 ,获得积分10
45秒前
46秒前
1分钟前
1分钟前
1分钟前
Sunny完成签到 ,获得积分10
1分钟前
2分钟前
光亮语梦完成签到 ,获得积分10
2分钟前
2分钟前
AllRightReserved完成签到 ,获得积分10
2分钟前
2分钟前
2分钟前
2分钟前
3分钟前
3分钟前
3分钟前
3分钟前
3分钟前
wykion完成签到,获得积分0
3分钟前
3分钟前
苻谷丝发布了新的文献求助30
3分钟前
苻谷丝完成签到,获得积分10
4分钟前
NEM嬛嬛驾到完成签到,获得积分10
4分钟前
韦霁滢完成签到,获得积分10
4分钟前
4分钟前
4分钟前
4分钟前
4分钟前
4分钟前
taku完成签到 ,获得积分10
4分钟前
希望天下0贩的0应助Andy.采纳,获得10
5分钟前
5分钟前
caca完成签到,获得积分0
5分钟前
核桃应助morena采纳,获得30
5分钟前
5分钟前
高分求助中
Technologies supporting mass customization of apparel: A pilot project 600
Introduction to Strong Mixing Conditions Volumes 1-3 500
Tip60 complex regulates eggshell formation and oviposition in the white-backed planthopper, providing effective targets for pest control 400
A Field Guide to the Amphibians and Reptiles of Madagascar - Frank Glaw and Miguel Vences - 3rd Edition 400
China Gadabouts: New Frontiers of Humanitarian Nursing, 1941–51 400
The Healthy Socialist Life in Maoist China, 1949–1980 400
Walking a Tightrope: Memories of Wu Jieping, Personal Physician to China's Leaders 400
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3798486
求助须知:如何正确求助?哪些是违规求助? 3343957
关于积分的说明 10318137
捐赠科研通 3060562
什么是DOI,文献DOI怎么找? 1679619
邀请新用户注册赠送积分活动 806731
科研通“疑难数据库(出版商)”最低求助积分说明 763314