锌
材料科学
光催化
罗丹明B
结晶度
镍
兴奋剂
氧化镍
微晶
带隙
核化学
可见光谱
分析化学(期刊)
化学工程
冶金
化学
复合材料
催化作用
光电子学
生物化学
色谱法
工程类
作者
Manel Sellam,Soulef Azizi,Dikra Bouras,Mamoun Fellah,Aleksei Obrosov,Gamal A. El‐Hiti
标识
DOI:10.1016/j.optmat.2024.115316
摘要
The kinetic investigation of rhodamine B dye's photocatalytic degradation, chosen as a model pollutant, was conducted at room temperature using Zinc oxide (ZnO) and nickel-doped zinc oxide (Zn0.97Ni0.03O) photocatalysts synthesized through the spray pyrolysis method. XRD analysis confirmed the formation of hexagonal ZnO and Zn0.97Ni0.03O films, with crystallite sizes ranging from 19 to 29 nm and varying in mean average grain size from 72 nm to 88 nm. The surface morphology of the Ni-doped ZnO films was influenced by nickel doping, observed through SEM and TEM micrographs, revealing a dense structure of spherical-shaped crystals. Light transmission and optical band gap energy of the films ranged between specified values, ranging from 3.27 to 3.24 eV. The degradation process was assessed under various conditions, including different light sources (UV lamp and solar irradiation), pH levels, and substrate concentrations. Degradation followed a pseudo-first-order kinetic model, with rate constants (k) and half-life times (t1/2) calculated accordingly. The degradation efficiency of undoped ZnO and ZnO doped with nickel decreased with increasing concentration under UV irradiation from (0.1–0.5 M) under UV irradiation decreased from (34.29–45.02) (49.61–56.61), while under visible light are (40–45.07 %) (58.46–60.24 %), removal rates ranged within specific percentages. The porous Zn0.97Ni0.03O synthesized at 0.5 M exhibited the highest photocatalytic efficiency due to its enhanced crystallinity, resulting in degradation rates of 9.22 and 11.22 × 10−3 min−1 and half-life times of 75.18 and 61.77 min at 90 min specified for both UV and solar light irradiations, respectively. Acidification of the reaction medium accelerated the photocatalytic degradation kinetics, while alkalization slowed it down. These findings mark a significant advancement in the utilization of oxide semiconductors for water pollutant degradation under natural sunlight.
科研通智能强力驱动
Strongly Powered by AbleSci AI