已入深夜,您辛苦了!由于当前在线用户较少,发布求助请尽量完整地填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!祝你早点完成任务,早点休息,好梦!

Fine-grained image classification based on TinyVit object location and graph convolution network

判别式 计算机科学 人工智能 模式识别(心理学) 上下文图像分类 卷积神经网络 图形 特征(语言学) 骨干网 图像(数学) 理论计算机科学 计算机网络 语言学 哲学
作者
Shijie Zheng,Gaocai Wang,Yujian Yuan,Shuqiang Huang
出处
期刊:Journal of Visual Communication and Image Representation [Elsevier BV]
卷期号:100: 104120-104120 被引量:1
标识
DOI:10.1016/j.jvcir.2024.104120
摘要

Fine-grained image classification is a branch of image classification. Recently, vision transformer has made excellent progress in the field of image recognition. Its self-attention mechanism can extract very effective image feature information. However, feeding fixed-size image blocks into the network introduces additional noise, which is detrimental to extract discriminative features for fine-grained images. The vision transformer's network model is large, making it difficult to utilize in practice. Moreover, many of today's fine-grained image classification methods focus on mining discriminative features while ignoring the connections within the image. To address these problems, we propose a novel method based on the lightweight TinyVit backbone network. Our approach utilizes the self-attention weight values of TinyVit as a guide to construct an effective object location (OL) module that cuts and enlarges the object area, providing the network with the opportunity to concentrate on the local object. Additionally, we employ the graph convolutional network (GCN) to create a spatial relationship feature learning (SRFL) module that captures spatial context information between image blocks in TinyVit with the help of the transformer's self-attention weights. OL and SRFL collaborate to jointly guide the classification task. The experimental results show that the proposed method achieved competitive performance, with the second-highest classification faccuracy on both the CUB-200–2011 and NABirds datasets. When tested on the Stanford Dogs dataset, our approach outperformed many popular methods. Our code is uploaded on https://github.com/hhhj1999/SRFL_OL.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
qq发布了新的文献求助10
1秒前
HF7发布了新的文献求助10
2秒前
迦鳞完成签到 ,获得积分10
3秒前
斯文败类应助HF7采纳,获得10
6秒前
酷波er应助知足的憨人*-*采纳,获得10
8秒前
zhanzhanzhan发布了新的文献求助10
9秒前
ming完成签到,获得积分20
10秒前
11秒前
13秒前
超帅的心锁完成签到,获得积分20
14秒前
Dyying应助Achange采纳,获得10
14秒前
等待若山发布了新的文献求助10
15秒前
jietaocn完成签到 ,获得积分10
16秒前
ab发布了新的文献求助10
18秒前
19秒前
小白又鹏发布了新的文献求助10
19秒前
排骨炖豆角完成签到 ,获得积分10
21秒前
等待若山完成签到,获得积分10
25秒前
26秒前
科研通AI2S应助yang采纳,获得30
29秒前
小白又鹏完成签到,获得积分10
30秒前
32秒前
SAN关闭了SAN文献求助
34秒前
七年发布了新的文献求助10
35秒前
阿童木完成签到 ,获得积分10
37秒前
SciGPT应助bbbabo采纳,获得10
38秒前
xff关闭了xff文献求助
39秒前
m(_._)m完成签到 ,获得积分0
40秒前
45秒前
共享精神应助nn采纳,获得10
45秒前
共享精神应助开朗的尔风采纳,获得30
48秒前
btsforever完成签到 ,获得积分10
49秒前
bbbabo发布了新的文献求助10
50秒前
Mental完成签到,获得积分10
50秒前
今后应助读书的时候采纳,获得30
51秒前
张晓娜完成签到 ,获得积分10
51秒前
sisyphus_yy完成签到 ,获得积分10
53秒前
专注的芷完成签到 ,获得积分10
54秒前
量子星尘发布了新的文献求助10
59秒前
开朗的尔风完成签到,获得积分20
1分钟前
高分求助中
Semantics for Latin: An Introduction 1055
Genomic signature of non-random mating in human complex traits 1000
Plutonium Handbook 1000
Three plays : drama 1000
Robot-supported joining of reinforcement textiles with one-sided sewing heads 600
SPSS for Windows Step by Step: A Simple Study Guide and Reference, 17.0 Update (10th Edition) 500
Multimodal injustices: Speech acts, gender bias, and speaker’s status 400
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 4104844
求助须知:如何正确求助?哪些是违规求助? 3642662
关于积分的说明 11541508
捐赠科研通 3350556
什么是DOI,文献DOI怎么找? 1840911
邀请新用户注册赠送积分活动 907801
科研通“疑难数据库(出版商)”最低求助积分说明 824964