Machine Learning for Screening Small Molecules as Passivation Materials for Enhanced Perovskite Solar Cells

钝化 材料科学 钙钛矿(结构) 纳米技术 工程物理 小分子 光电子学 化学工程 图层(电子) 生物 工程类 遗传学
作者
Xin Zhang,Bin Ding,Yao Wang,Yan Liu,Gao Zhang,Lirong Zeng,Lijun Yang,Chang‐Jiu Li,Guan‐Jun Yang,Mohammad Khaja Nazeeruddin,Bo Chen
出处
期刊:Advanced Functional Materials [Wiley]
卷期号:34 (30) 被引量:9
标识
DOI:10.1002/adfm.202314529
摘要

Abstract Utilization of small molecules as passivation materials for perovskite solar cells (PSCs) has gained significant attention recently, with hundreds of small molecules demonstrating passivation effects. In this study, a high‐accuracy machine learning model is established to identify the dominant molecular traits influencing passivation and efficiently screen excellent passivation materials among small molecules. To address the challenge of limited available dataset, a novel evaluation method called random‐extracted and recoverable cross‐validation (RE‐RCV) is proposed, which ensures more precise model evaluation with reduced error. Among 31 examined features, dipole moment is identified, hydrogen bond acceptor count, and HOMO‐LUMO gap as significant traits affecting passivation, offering valuable guidance for the selection of passivation molecules. The predictions are experimentally validate with three representative molecules: 4‐aminobenzenesulfonamide, 4‐Chloro‐2‐hydroxy‐5‐sulfamoylbenzoic acid, and Phenolsulfonphthalein, which exhibit capability to increase absolute efficiency values by over 2%, with a champion efficiency of 25.41%. This highlights its potential to expedite advancements in PSCs.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
深情安青应助ycw123采纳,获得10
刚刚
刚刚
桐桐应助科研通管家采纳,获得10
1秒前
顾矜应助科研通管家采纳,获得30
1秒前
英姑应助科研通管家采纳,获得10
1秒前
orixero应助科研通管家采纳,获得10
1秒前
大模型应助科研通管家采纳,获得30
1秒前
烟花应助科研通管家采纳,获得20
1秒前
无曲应助科研通管家采纳,获得10
1秒前
1秒前
上官若男应助科研通管家采纳,获得10
1秒前
搜集达人应助科研通管家采纳,获得10
1秒前
Hello应助科研通管家采纳,获得10
1秒前
酷波er应助科研通管家采纳,获得10
1秒前
科研通AI2S应助科研通管家采纳,获得10
1秒前
无花果应助科研通管家采纳,获得10
1秒前
科研通AI5应助科研通管家采纳,获得10
1秒前
七慕凉应助科研通管家采纳,获得10
1秒前
Rage_Wang应助科研通管家采纳,获得20
1秒前
CipherSage应助科研通管家采纳,获得10
2秒前
丘比特应助科研通管家采纳,获得10
2秒前
充电宝应助科研通管家采纳,获得10
2秒前
bkagyin应助科研通管家采纳,获得10
2秒前
皮肤科应助科研通管家采纳,获得20
2秒前
科研通AI5应助科研通管家采纳,获得30
2秒前
隐形曼青应助科研通管家采纳,获得10
2秒前
2秒前
orixero应助科研通管家采纳,获得10
2秒前
刚刚好发布了新的文献求助30
5秒前
5秒前
5秒前
搜集达人应助火星天采纳,获得10
5秒前
6秒前
震动的听枫完成签到,获得积分10
6秒前
7秒前
乐观文龙完成签到,获得积分10
7秒前
充电宝应助cherrydemi采纳,获得10
7秒前
8秒前
科研小豪发布了新的文献求助10
10秒前
10秒前
高分求助中
【此为提示信息,请勿应助】请按要求发布求助,避免被关 20000
ISCN 2024 – An International System for Human Cytogenomic Nomenclature (2024) 3000
Continuum Thermodynamics and Material Modelling 2000
Encyclopedia of Geology (2nd Edition) 2000
105th Edition CRC Handbook of Chemistry and Physics 1600
Maneuvering of a Damaged Navy Combatant 650
Mindfulness and Character Strengths: A Practitioner's Guide to MBSP 380
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3776812
求助须知:如何正确求助?哪些是违规求助? 3322237
关于积分的说明 10209395
捐赠科研通 3037506
什么是DOI,文献DOI怎么找? 1666749
邀请新用户注册赠送积分活动 797656
科研通“疑难数据库(出版商)”最低求助积分说明 757976