An Online Deep Reinforcement Learning-Based Order Recommendation Framework for Rider-Centered Food Delivery System

强化学习 马尔可夫决策过程 计算机科学 订单(交换) 搭便车问题 过程(计算) 推荐系统 排名(信息检索) 马尔可夫过程 人工智能 运筹学 机器学习 工程类 业务 经济 财务 公共物品 微观经济学 统计 数学 操作系统
作者
Xing Wang,Ling Wang,Chenxin Dong,Hao Ren,Ke Xing
出处
期刊:IEEE Transactions on Intelligent Transportation Systems [Institute of Electrical and Electronics Engineers]
卷期号:24 (5): 5640-5654 被引量:7
标识
DOI:10.1109/tits.2023.3237580
摘要

As an important part of intelligent transportation systems, On-demand Food Delivery (OFD) becomes a prevalent logistics service in modern society. With the continuously increasing scale of transactions, rider-centered assignment manner is gaining more attraction than traditional platform-centered assignment among food delivery companies. However, problems such as dynamic arrivals of orders, uncertain rider behaviors and various false-negative feedbacks inhibit the platform to make a proper decision in the interaction process with riders. To address such issues, we propose an online Deep Reinforcement Learning-based Order Recommendation (DRLOR) framework to solve the decision-making problem in the scenario of OFD. The problem is modeled as a Markov Decision Process (MDP). The DRLOR framework mainly consists of three networks, i.e., the actor-critic network that learns an optimal order ranking policy at each interaction step, the rider behavior prediction network that predicts the grabbing behavior of riders and the feedback correlation network based on attention mechanism that identifies valid feedback information from false feedbacks and learns a high-dimensional state embedding to represent the states of riders. Extensive offline and online experiments are conducted on Meituan delivery platform and the results demonstrate that the proposed DRLOR framework can significantly shorten the length of interactions between riders and the platform, leading to a better experience of both riders and customers.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
1秒前
劉平果完成签到 ,获得积分10
1秒前
可爱的函函应助123采纳,获得10
2秒前
小贾baby发布了新的文献求助10
2秒前
科研通AI5应助Dr.c采纳,获得10
2秒前
踔厉完成签到 ,获得积分10
5秒前
5秒前
6秒前
怕孤独的冰淇淋完成签到,获得积分10
8秒前
8秒前
hanhan发布了新的文献求助10
9秒前
思源应助daidai采纳,获得10
10秒前
zzz完成签到 ,获得积分10
11秒前
11秒前
12秒前
123发布了新的文献求助10
14秒前
16秒前
Androc完成签到,获得积分10
17秒前
wanci应助小可爱采纳,获得50
17秒前
Dr.c发布了新的文献求助10
18秒前
18秒前
xuli21315完成签到,获得积分10
19秒前
美满听白完成签到,获得积分10
20秒前
FashionBoy应助明理迎曼采纳,获得10
21秒前
酷波er应助muqianyaowanan采纳,获得30
22秒前
23秒前
今后应助Su采纳,获得10
23秒前
daidai发布了新的文献求助10
23秒前
汉堡包应助hh采纳,获得10
25秒前
26秒前
28秒前
缥缈冰珍发布了新的文献求助10
29秒前
852应助vict采纳,获得10
29秒前
HP完成签到,获得积分10
30秒前
yuying完成签到 ,获得积分10
30秒前
桐桐应助hanhan采纳,获得10
32秒前
还单身的惜文完成签到 ,获得积分10
32秒前
Sucrapipple完成签到,获得积分10
33秒前
唠叨的白萱完成签到 ,获得积分10
33秒前
bobo发布了新的文献求助10
33秒前
高分求助中
Encyclopedia of Mathematical Physics 2nd edition 888
Introduction to Strong Mixing Conditions Volumes 1-3 500
Tip60 complex regulates eggshell formation and oviposition in the white-backed planthopper, providing effective targets for pest control 400
Optical and electric properties of monocrystalline synthetic diamond irradiated by neutrons 320
共融服務學習指南 300
Essentials of Pharmacoeconomics: Health Economics and Outcomes Research 3rd Edition. by Karen Rascati 300
Peking Blues // Liao San 300
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3802384
求助须知:如何正确求助?哪些是违规求助? 3348043
关于积分的说明 10336044
捐赠科研通 3063943
什么是DOI,文献DOI怎么找? 1682320
邀请新用户注册赠送积分活动 808035
科研通“疑难数据库(出版商)”最低求助积分说明 763997