Knowledge Distillation Guided Interpretable Brain Subgraph Neural Networks for Brain Disorder Exploration

神经影像学 判别式 人工智能 机器学习 计算机科学 人工神经网络 神经科学 心理学
作者
Xuexiong Luo,Jia Wu,Jian Yang,Hongyang Chen,Zhao Li,Hao Peng,Chuan Zhou
出处
期刊:IEEE transactions on neural networks and learning systems [Institute of Electrical and Electronics Engineers]
卷期号:36 (2): 3559-3572 被引量:4
标识
DOI:10.1109/tnnls.2023.3341802
摘要

The human brain is a highly complex neurological system that has been the subject of continuous exploration by scientists. With the help of modern neuroimaging techniques, there has been significant progress made in brain disorder analysis. There is an increasing interest about utilizing artificial intelligence techniques to improve the efficiency of disorder diagnosis in recent years. However, these methods rely only on neuroimaging data for disorder diagnosis and do not explore the pathogenic mechanism behind the disorder or provide an interpretable result toward the diagnosis decision. Furthermore, the scarcity of medical data limits the performance of existing methods. As the hot application of graph neural networks (GNNs) in molecular graphs and drug discovery due to its strong graph-structured data learning ability, whether GNNs can also play a huge role in the field of brain disorder analysis. Thus, in this work, we innovatively model brain neuroimaging data into graph-structured data and propose knowledge distillation (KD) guided brain subgraph neural networks to extract discriminative subgraphs between patient and healthy brain graphs to explain which brain regions and abnormal functional connectivities cause the disorder. Specifically, we introduce the KD technique to transfer the knowledge of pretrained teacher model to guide brain subgraph neural networks training and alleviate the problem of insufficient training data. And these discriminative subgraphs are conducive to learn better brain graph-level representations for disorder prediction. We conduct abundant experiments on two functional magnetic resonance imaging datasets, i.e., Parkinson's disease (PD) and attention-deficit/hyperactivity disorder (ADHD), and experimental results well demonstrate the superiority of our method over other brain graph analysis methods for disorder prediction accuracy. The interpretable experimental results given by our method are consistent with corresponding medical research, which is encouraging to provide a potential for deeper brain disorder study.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
2秒前
3秒前
shh发布了新的文献求助10
3秒前
谢明明发布了新的文献求助10
4秒前
搜集达人应助果味桃采纳,获得10
5秒前
M1有光发布了新的文献求助10
6秒前
陈chq发布了新的文献求助10
6秒前
冷艳的海白完成签到,获得积分10
6秒前
9秒前
11秒前
11秒前
11秒前
12秒前
14秒前
果味桃完成签到,获得积分20
15秒前
CHEN完成签到 ,获得积分10
15秒前
efjbvb发布了新的文献求助10
15秒前
shh发布了新的文献求助10
15秒前
酷波er应助黄橙橙采纳,获得10
15秒前
蔡颂华发布了新的文献求助10
17秒前
淡淡翠安发布了新的文献求助10
17秒前
果味桃发布了新的文献求助10
18秒前
18秒前
19秒前
muzi发布了新的文献求助10
19秒前
科研通AI2S应助Shacoooo采纳,获得10
20秒前
真的不会完成签到,获得积分10
20秒前
20秒前
liuerlong完成签到 ,获得积分10
21秒前
21秒前
22秒前
22秒前
luo发布了新的文献求助10
22秒前
量子星尘发布了新的文献求助10
23秒前
谢明明完成签到,获得积分20
23秒前
WYQ发布了新的文献求助10
24秒前
24秒前
25秒前
uo发布了新的文献求助10
25秒前
caixukun发布了新的文献求助10
25秒前
高分求助中
The Oxford Encyclopedia of the History of Modern Psychology 2000
Chinesen in Europa – Europäer in China: Journalisten, Spione, Studenten 1200
Deutsche in China 1920-1950 1200
Applied Survey Data Analysis (第三版, 2025) 850
Mineral Deposits of Africa (1907-2023): Foundation for Future Exploration 800
The User Experience Team of One (2nd Edition) 600
 Introduction to Comparative Public Administration Administrative Systems and Reforms in Europe, Third Edition 3rd edition 590
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3881187
求助须知:如何正确求助?哪些是违规求助? 3423558
关于积分的说明 10734854
捐赠科研通 3148536
什么是DOI,文献DOI怎么找? 1737159
邀请新用户注册赠送积分活动 838713
科研通“疑难数据库(出版商)”最低求助积分说明 784050