蓝藻
EC50型
化学
铜绿微囊藻
铅化合物
卤化
立体化学
组合化学
生物化学
体外
细菌
生物
有机化学
遗传学
作者
Jili Wang,Wenhai Wu,Yaqing Zhou,Min Han,Xin Zhou,Yong Sun,Aidong Zhang
标识
DOI:10.1016/j.pestbp.2024.105769
摘要
The discovery of safe, effective, and selective chemical algicides is the stringent need for the algicides development, and it is also one of the effective routes to control cyanobacteria harmful algal blooms and to meet the higher requirements of environmental and ecological. In this work, a series of novel bromo-N-phenyl-5-o-hydroxyphenylpyrazole-3-carboxyamides were rationally designed as pseudilin analogs by bioisosteric replacement and molecular hybridization strategies, in which the pyrrole unit of pseudilin was replaced with pyrazole and further combined with the dominant structural fragments of algicide diuron. The synthesis was carried out by a facile four-step routeincluding cyclization, amidation, transanulation, and halogenation. The biological activity evaluation on AtIspD, EcIspD, Synechocystis sp. PCC6803 and Microcystis aeruginosa FACHB905 revealed that most compounds had good EcIspD and excellent cyanobacteria inhibitory activity. In particular, compound 6bb exhibited potent algicidal activity against PCC6803 and FACHB905 with EC50 = 1.28 μM and 0.37 μM, respectively, 1.4-fold and 4.0-fold enhancement compared to copper sulfate (EC50 = 1.79 and 1.49 μM, respectively), and it also showed the best inhibitory activity of EcIspD. The binding of 6bb to EcIspD was explored by molecular docking, and it was confirmed that 6bb could bind to the EcIspD active site. Compound 6bb was proven to be a potential structure for the further development of novel algicides that targets IspD in the MEP pathway.
科研通智能强力驱动
Strongly Powered by AbleSci AI