清晨好,您是今天最早来到科研通的研友!由于当前在线用户较少,发布求助请尽量完整地填写文献信息,科研通机器人24小时在线,伴您科研之路漫漫前行!

Addressing the Contrast Media Recognition Challenge

医学 放射科 下腔静脉 十二指肠 置信区间 对比度(视觉) 内科学 人工智能 计算机科学
作者
Giulia Baldini,René Hosch,Cynthia S. Schmidt,Katarzyna Borys,Lennard Kroll,Sven Koitka,Patrizia Haubold,Obioma Pelka,Felix Nensa,Johannes Haubold
出处
期刊:Investigative Radiology [Lippincott Williams & Wilkins]
卷期号:59 (9): 635-645 被引量:2
标识
DOI:10.1097/rli.0000000000001071
摘要

Objectives Accurately acquiring and assigning different contrast-enhanced phases in computed tomography (CT) is relevant for clinicians and for artificial intelligence orchestration to select the most appropriate series for analysis. However, this information is commonly extracted from the CT metadata, which is often wrong. This study aimed at developing an automatic pipeline for classifying intravenous (IV) contrast phases and additionally for identifying contrast media in the gastrointestinal tract (GIT). Materials and Methods This retrospective study used 1200 CT scans collected at the investigating institution between January 4, 2016 and September 12, 2022, and 240 CT scans from multiple centers from The Cancer Imaging Archive for external validation. The open-source segmentation algorithm TotalSegmentator was used to identify regions of interest (pulmonary artery, aorta, stomach, portal/splenic vein, liver, portal vein/hepatic veins, inferior vena cava, duodenum, small bowel, colon, left/right kidney, urinary bladder), and machine learning classifiers were trained with 5-fold cross-validation to classify IV contrast phases (noncontrast, pulmonary arterial, arterial, venous, and urographic) and GIT contrast enhancement. The performance of the ensembles was evaluated using the receiver operating characteristic area under the curve (AUC) and 95% confidence intervals (CIs). Results For the IV phase classification task, the following AUC scores were obtained for the internal test set: 99.59% [95% CI, 99.58–99.63] for the noncontrast phase, 99.50% [95% CI, 99.49–99.52] for the pulmonary-arterial phase, 99.13% [95% CI, 99.10–99.15] for the arterial phase, 99.8% [95% CI, 99.79–99.81] for the venous phase, and 99.7% [95% CI, 99.68–99.7] for the urographic phase. For the external dataset, a mean AUC of 97.33% [95% CI, 97.27–97.35] and 97.38% [95% CI, 97.34–97.41] was achieved for all contrast phases for the first and second annotators, respectively. Contrast media in the GIT could be identified with an AUC of 99.90% [95% CI, 99.89–99.9] in the internal dataset, whereas in the external dataset, an AUC of 99.73% [95% CI, 99.71–99.73] and 99.31% [95% CI, 99.27–99.33] was achieved with the first and second annotator, respectively. Conclusions The integration of open-source segmentation networks and classifiers effectively classified contrast phases and identified GIT contrast enhancement using anatomical landmarks.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
鳗鱼惋庭完成签到,获得积分10
9秒前
大模型应助冷静妙旋采纳,获得10
12秒前
雪山飞龙完成签到,获得积分10
16秒前
Taro完成签到 ,获得积分10
17秒前
yuiip完成签到 ,获得积分10
18秒前
冷静妙旋完成签到,获得积分10
32秒前
华仔应助科研通管家采纳,获得10
33秒前
科研通AI2S应助科研通管家采纳,获得10
33秒前
33秒前
Dravia应助科研通管家采纳,获得10
33秒前
Hello应助图书馆采纳,获得10
37秒前
郭俊秀完成签到 ,获得积分10
43秒前
科研的豪哥完成签到 ,获得积分10
45秒前
46秒前
凤迎雪飘完成签到,获得积分10
46秒前
图书馆发布了新的文献求助10
51秒前
1分钟前
1分钟前
hanliulaixi完成签到 ,获得积分10
1分钟前
李健的小迷弟应助王洪宇采纳,获得10
2分钟前
共享精神应助K.I.D采纳,获得10
2分钟前
2分钟前
李健应助阿亮采纳,获得30
2分钟前
冷静妙旋发布了新的文献求助10
2分钟前
2分钟前
科研通AI2S应助科研通管家采纳,获得10
2分钟前
zhuosht完成签到 ,获得积分10
2分钟前
orixero应助hachi采纳,获得10
2分钟前
大气夜山完成签到 ,获得积分10
2分钟前
正直的夏真完成签到 ,获得积分10
2分钟前
2分钟前
hachi发布了新的文献求助10
2分钟前
3分钟前
帅气发布了新的文献求助10
3分钟前
陌上之心完成签到 ,获得积分10
3分钟前
努力搬砖努力干完成签到,获得积分10
3分钟前
帅气关注了科研通微信公众号
3分钟前
3分钟前
3分钟前
XRWei完成签到 ,获得积分10
3分钟前
高分求助中
The Mother of All Tableaux Order, Equivalence, and Geometry in the Large-scale Structure of Optimality Theory 1370
生物降解型栓塞微球市场(按产品类型、应用和最终用户)- 2030 年全球预测 1000
Medical English Clear and Simple(By Melodie Hull) 400
Oxford English for Careers: Nursing / Medicine • 🩺 出版社:Oxford University Press • 400
English in Medicine(作者:Eric H. Glendinning) 400
Ecological and Human Health Impacts of Contaminated Food and Environments 400
Phylogenetic study of the order Polydesmida (Myriapoda: Diplopoda) 360
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 计算机科学 内科学 纳米技术 复合材料 化学工程 遗传学 催化作用 物理化学 基因 冶金 量子力学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 3927814
求助须知:如何正确求助?哪些是违规求助? 3472567
关于积分的说明 10972754
捐赠科研通 3202336
什么是DOI,文献DOI怎么找? 1769361
邀请新用户注册赠送积分活动 858025
科研通“疑难数据库(出版商)”最低求助积分说明 796280