Low-cost MEMS accelerometers for earthquake early warning systems: A dataset collected during seismic events in central Italy

加速度计 元数据 噪音(视频) 震级(天文学) 地震学 无线传感器网络 计算机科学 震源 测距 采样(信号处理) 实时计算 地质学 电信 人工智能 诱发地震 计算机网络 物理 探测器 操作系统 图像(数学) 天文
作者
Marco Esposito,S. Marzorati,Alberto Belli,Chiara Ladina,Lorenzo Palma,Carlo Calamita,Debora Pantaleo,Paola Pierleoni
出处
期刊:Data in Brief [Elsevier BV]
卷期号:53: 110174-110174 被引量:1
标识
DOI:10.1016/j.dib.2024.110174
摘要

This article describes a dataset of acceleration signals acquired from a low-cost Wireless Sensor Network (WSN) during seismic events that occurred in Central Italy. The WSN consists of 5 low-cost sensor nodes, each embedding an ADXL355 tri-axial MEMS accelerometer with a fixed sampling frequency of 250 Hz. The data was acquired from February 2023 to the end of June 2023. During this period, several earthquake sequences affected the area where the sensor network was installed. Continuous data was acquired from the WSN and then trimmed around the origin time of seismic events that occurred near the installation site, close to the city of Pollenza (MC), Italy. A total of 67 events were selected, whose data is available at the Istituto Nazionale di Geofisica e Vulcanologia (INGV) Seismology data center. The traces acquired from the WSN were then manually annotated by analysts from INGV. Annotations include picking time for P and S phases, when distinguishable from the background noise, alongside an associated uncertainty level for the manual annotations. The resulting dataset consists of 328 3 × 25001 arrays, each associated with its metadata. The metadata includes event data (hypocenter position, origin time, magnitude, magnitude type, etc.), trace-related data (mean, median, maximum, and minimum amplitudes, manual picks, and picks uncertainty), and sensor-specific data (sensor name, sensitivity, and orientation). Furthermore, a small dataset consisting of non-seismic traces is included, with the goal of providing records of noise-only traces, relative to both electronic and environmental/anthropic noise sources. The dataset holds potential for training and developing Machine Learning or signal processing algorithms for seismic data with low signal-to-noise ratios. Additionally, it is valuable for research about earthquakes, structural health monitoring, and MEMS accelerometer performance in civil and seismic engineering applications.

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
TTTaT完成签到,获得积分10
刚刚
小二郎应助就叫柠檬吧采纳,获得10
1秒前
2秒前
4秒前
yqq38完成签到,获得积分10
5秒前
科研通AI2S应助西西采纳,获得10
6秒前
6秒前
学医自救发布了新的文献求助10
7秒前
13秒前
一二发布了新的文献求助10
14秒前
情怀应助小宇子采纳,获得30
15秒前
共享精神应助哇卡卡采纳,获得10
16秒前
万能图书馆应助zxtwins采纳,获得10
17秒前
18秒前
19秒前
烟火岸上完成签到,获得积分10
19秒前
19秒前
20秒前
小怪兽完成签到 ,获得积分10
20秒前
Guochunbao完成签到,获得积分10
21秒前
冯家乐发布了新的文献求助30
22秒前
汉堡包应助yuki采纳,获得10
23秒前
自由山槐完成签到,获得积分10
23秒前
冰魂应助激情的香旋采纳,获得10
24秒前
wanci应助水若冰寒采纳,获得10
25秒前
hys发布了新的文献求助10
25秒前
理想国的过客完成签到,获得积分10
25秒前
25秒前
杨xy完成签到,获得积分10
26秒前
26秒前
打击8完成签到 ,获得积分10
27秒前
愉快彩虹完成签到,获得积分10
27秒前
科研通AI5应助Alger采纳,获得10
28秒前
29秒前
30秒前
安静凡旋发布了新的文献求助10
30秒前
文艺访风完成签到,获得积分10
31秒前
32秒前
34秒前
高分求助中
Basic Discrete Mathematics 1000
Technologies supporting mass customization of apparel: A pilot project 600
Introduction to Strong Mixing Conditions Volumes 1-3 500
Tip60 complex regulates eggshell formation and oviposition in the white-backed planthopper, providing effective targets for pest control 400
A Field Guide to the Amphibians and Reptiles of Madagascar - Frank Glaw and Miguel Vences - 3rd Edition 400
China Gadabouts: New Frontiers of Humanitarian Nursing, 1941–51 400
The Healthy Socialist Life in Maoist China, 1949–1980 400
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3799862
求助须知:如何正确求助?哪些是违规求助? 3345153
关于积分的说明 10323869
捐赠科研通 3061736
什么是DOI,文献DOI怎么找? 1680492
邀请新用户注册赠送积分活动 807113
科研通“疑难数据库(出版商)”最低求助积分说明 763462