A novel method for detection of pancreatic Ductal Adenocarcinoma using explainable machine learning

人工智能 支持向量机 计算机科学 胰腺癌 模式识别(心理学) 克拉斯 线性判别分析 接收机工作特性 机器学习 特征向量 癌症 医学 内科学 结直肠癌
作者
Murtaza Aslam,Fozia Rajbdad,Shoaib Azmat,Zheng Li,J. Philip Boudreaux,Ramcharan Thiagarajan,Shaomian Yao,Jian Xu
出处
期刊:Computer Methods and Programs in Biomedicine [Elsevier BV]
卷期号:245: 108019-108019 被引量:5
标识
DOI:10.1016/j.cmpb.2024.108019
摘要

Pancreatic Ductal Adenocarcinoma (PDAC) is a form of pancreatic cancer that is one of the primary causes of cancer-related deaths globally, with less than 10 % of the five years survival rate. The prognosis of pancreatic cancer has remained poor in the last four decades, mainly due to the lack of early diagnostic mechanisms. This study proposes a novel method for detecting PDAC using explainable and supervised machine learning from Raman spectroscopic signals. An insightful feature set consisting of statistical, peak, and extended empirical mode decomposition features is selected using the support vector machine recursive feature elimination method integrated with a correlation bias reduction. Explicable features successfully identified mutations in Kirsten rat sarcoma viral oncogene homolog (KRAS) and tumor suppressor protein53 (TP53) in the fingerprint region for the first time in the literature. PDAC and normal pancreas are classified using K-nearest neighbor, linear discriminant analysis, and support vector machine classifiers. This study achieved a classification accuracy of 98.5% using a nonlinear support vector machine. Our proposed method reduced test time by 28.5 % and saved 85.6 % memory utilization, which reduces complexity significantly and is more accurate than the state-of-the-art method. The generalization of the proposed method is assessed by fifteen-fold cross-validation, and its performance is evaluated using accuracy, specificity, sensitivity, and receiver operating characteristic curves. In this study, we proposed a method to detect and define the fingerprint region for PDAC using explainable machine learning. This simple, accurate, and efficient method for PDAC detection in mice could be generalized to examine human pancreatic cancer and provide a basis for precise chemotherapy for early cancer treatment.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
1秒前
tt发布了新的文献求助20
2秒前
neoeyes发布了新的文献求助10
3秒前
zephyrforzhou完成签到,获得积分10
4秒前
充电宝应助遇见0608采纳,获得10
12秒前
钱念波发布了新的文献求助10
13秒前
14秒前
william完成签到 ,获得积分10
15秒前
杭州007完成签到 ,获得积分10
17秒前
eeeee发布了新的文献求助10
18秒前
19秒前
多多发布了新的文献求助10
23秒前
23秒前
遇见0608发布了新的文献求助10
29秒前
30秒前
31秒前
阿德利企鹅完成签到 ,获得积分10
32秒前
David完成签到 ,获得积分10
34秒前
望今如昔发布了新的文献求助10
36秒前
一颗杨梅完成签到,获得积分10
37秒前
不加香菜完成签到 ,获得积分10
37秒前
Hi_aloha发布了新的文献求助30
38秒前
着急的小蜜蜂完成签到,获得积分10
38秒前
宋子琛完成签到,获得积分10
39秒前
40秒前
41秒前
42秒前
糖果发布了新的文献求助10
47秒前
一木张完成签到,获得积分10
47秒前
炙热灰狼发布了新的文献求助10
47秒前
叶赛文完成签到,获得积分10
51秒前
51秒前
德彪发布了新的文献求助30
51秒前
竹筏过海完成签到,获得积分0
52秒前
Wish完成签到,获得积分10
53秒前
科研通AI5应助Hi_aloha采纳,获得10
56秒前
美满的夏天完成签到,获得积分10
56秒前
夏珩发布了新的文献求助10
57秒前
淀粉肠完成签到 ,获得积分10
1分钟前
CR完成签到 ,获得积分10
1分钟前
高分求助中
【此为提示信息,请勿应助】请按要求发布求助,避免被关 20000
Technologies supporting mass customization of apparel: A pilot project 450
Mixing the elements of mass customisation 360
Периодизация спортивной тренировки. Общая теория и её практическое применение 310
the MD Anderson Surgical Oncology Manual, Seventh Edition 300
Nucleophilic substitution in azasydnone-modified dinitroanisoles 300
Political Ideologies Their Origins and Impact 13th Edition 260
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3781364
求助须知:如何正确求助?哪些是违规求助? 3326849
关于积分的说明 10228589
捐赠科研通 3041878
什么是DOI,文献DOI怎么找? 1669613
邀请新用户注册赠送积分活动 799153
科研通“疑难数据库(出版商)”最低求助积分说明 758751