Deep learning for non-parameterized MEMS structural design

计算机科学 人工神经网络 深度学习 有限元法 微电子机械系统 人工智能 计算 计算机工程 电子工程 模拟 算法 工程类 结构工程 物理 量子力学
作者
Ruiqi Guo,Fanping Sui,Wei Yue,Zekai Wang,Sedat Pala,Kunying Li,Renxiao Xu,Liwei Lin
出处
期刊:Microsystems & Nanoengineering [Springer Nature]
卷期号:8 (1) 被引量:21
标识
DOI:10.1038/s41378-022-00432-9
摘要

The geometric designs of MEMS devices can profoundly impact their physical properties and eventual performances. However, it is challenging for researchers to rationally consider a large number of possible designs, as it would be very time- and resource-consuming to study all these cases using numerical simulation. In this paper, we report the use of deep learning techniques to accelerate the MEMS design cycle by quickly and accurately predicting the physical properties of numerous design candidates with vastly different geometric features. Design candidates are represented in a nonparameterized, topologically unconstrained form using pixelated black-and-white images. After sufficient training, a deep neural network can quickly calculate the physical properties of interest with good accuracy without using conventional numerical tools such as finite element analysis. As an example, we apply our deep learning approach in the prediction of the modal frequency and quality factor of disk-shaped microscale resonators. With reasonable training, our deep learning neural network becomes a high-speed, high-accuracy calculator: it can identify the flexural mode frequency and the quality factor 4.6 × 103 times and 2.6 × 104 times faster, respectively, than conventional numerical simulation packages, with good accuracies of 98.8 ± 1.6% and 96.8 ± 3.1%, respectively. When simultaneously predicting the frequency and the quality factor, up to ~96.0% of the total computation time can be saved during the design process. The proposed technique can rapidly screen over thousands of design candidates and promotes experience-free and data-driven MEMS structural designs.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
hhh完成签到,获得积分10
1秒前
独特的哈密瓜数据线完成签到,获得积分10
1秒前
科研通AI5应助凉皮亮晶晶采纳,获得30
1秒前
1秒前
NexusExplorer应助soso采纳,获得10
2秒前
2秒前
悲伤肉丸完成签到 ,获得积分10
3秒前
ponymjj应助CCCCC采纳,获得10
3秒前
小杜在此发布了新的文献求助10
3秒前
tangz发布了新的文献求助10
3秒前
3秒前
3秒前
3秒前
4秒前
Druid发布了新的文献求助10
4秒前
ekdjk发布了新的文献求助10
4秒前
晶格畸变完成签到,获得积分10
5秒前
bc应助aa采纳,获得20
6秒前
轻松煎饼发布了新的文献求助10
6秒前
6秒前
LiuShenglan完成签到,获得积分10
6秒前
7秒前
哈哈发布了新的文献求助10
7秒前
谢魏楠完成签到,获得积分10
7秒前
脑洞疼应助科研通管家采纳,获得30
7秒前
斯文败类应助科研通管家采纳,获得30
7秒前
SciGPT应助科研通管家采纳,获得10
7秒前
白莆发布了新的文献求助10
7秒前
科研通AI5应助科研通管家采纳,获得30
8秒前
科研通AI5应助科研通管家采纳,获得10
8秒前
Owen应助科研通管家采纳,获得10
8秒前
机灵柚子应助科研通管家采纳,获得20
8秒前
8秒前
8秒前
星辰大海应助科研通管家采纳,获得10
8秒前
赘婿应助科研通管家采纳,获得10
8秒前
缥缈纲应助科研通管家采纳,获得10
8秒前
NexusExplorer应助科研通管家采纳,获得10
9秒前
爆米花应助科研通管家采纳,获得10
9秒前
高分求助中
Les Mantodea de Guyane Insecta, Polyneoptera 2500
Mobilization, center-periphery structures and nation-building 600
Technologies supporting mass customization of apparel: A pilot project 450
China—Art—Modernity: A Critical Introduction to Chinese Visual Expression from the Beginning of the Twentieth Century to the Present Day 430
Tip60 complex regulates eggshell formation and oviposition in the white-backed planthopper, providing effective targets for pest control 400
A Field Guide to the Amphibians and Reptiles of Madagascar - Frank Glaw and Miguel Vences - 3rd Edition 400
China Gadabouts: New Frontiers of Humanitarian Nursing, 1941–51 400
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3792984
求助须知:如何正确求助?哪些是违规求助? 3337735
关于积分的说明 10286331
捐赠科研通 3054258
什么是DOI,文献DOI怎么找? 1675917
邀请新用户注册赠送积分活动 803905
科研通“疑难数据库(出版商)”最低求助积分说明 761598