推论
人工智能
计算机科学
深度学习
鉴定(生物学)
任务(项目管理)
神经影像学
机器学习
过程(计算)
模式识别(心理学)
集合(抽象数据类型)
心理学
神经科学
生物
植物
管理
经济
程序设计语言
操作系统
作者
Ahmad Wisnu Mulyadi,Wonsik Jung,Kwanseok Oh,Jee Seok Yoon,Kun Ho Lee,Heung‐Il Suk
出处
期刊:NeuroImage
[Elsevier BV]
日期:2023-04-08
卷期号:273: 120073-120073
被引量:17
标识
DOI:10.1016/j.neuroimage.2023.120073
摘要
Identifying Alzheimer's disease (AD) involves a deliberate diagnostic process owing to its innate traits of irreversibility with subtle and gradual progression. These characteristics make AD biomarker identification from structural brain imaging (e.g., structural MRI) scans quite challenging. Using clinically-guided prototype learning, we propose a novel deep-learning approach through eXplainable AD Likelihood Map Estimation (XADLiME) for AD progression modeling over 3D sMRIs. Specifically, we establish a set of topologically-aware prototypes onto the clusters of latent clinical features, uncovering an AD spectrum manifold. Considering this pseudo map as an enriched reference, we employ an estimating network to approximate the AD likelihood map over a 3D sMRI scan. Additionally, we promote the explainability of such a likelihood map by revealing a comprehensible overview from clinical and morphological perspectives. During the inference, this estimated likelihood map served as a substitute for unseen sMRI scans for effectively conducting the downstream task while providing thorough explainable states.
科研通智能强力驱动
Strongly Powered by AbleSci AI