A Bi-level optimization model of integrated energy system considering wind power uncertainty

数学优化 稳健优化 稳健性(进化) 最优化问题 可再生能源 储能 电力系统 风力发电 适应性 上下界 计算机科学 控制理论(社会学) 功率(物理) 数学 工程类 经济 基因 数学分析 生物化学 化学 物理 管理 控制(管理) 量子力学 人工智能 电气工程
作者
Wei Fan,Qingbo Tan,Amin Zhang,Liwei Ju,Yuwei Wang,Zhe Yin,Xudong Li
出处
期刊:Renewable Energy [Elsevier BV]
卷期号:202: 973-991 被引量:50
标识
DOI:10.1016/j.renene.2022.12.007
摘要

To cope with the volatility of renewable energy and improve the efficiency of energy storage investment, a bi-level (B-L) optimization model of an integrated energy system (IES) with multiple types of energy storage is established by considering the uncertainty of wind power. The upper-level optimization model considers the lowest configuration cost of energy storage as the objective function and satisfies the constraints of the energy storage configuration. The lower-level optimization model considers the lowest operation cost of the IES as the objective function and satisfies the constraints of the system operation. Second, to overcome the fluctuation problem of wind power output, a robust optimization theory is introduced to describe the uncertainty. Robust coefficients are set to reflect different risk attitudes, which improves the adaptability of the system to uncertainty. Third, the B-L optimization model is solved using the Karush–Kuhn Tucker condition. Finally, a new park is used to implement the simulation. The conclusions are as follows: (1) The economic configuration strategy and optimal operation scheme can be obtained by applying the B-L optimization model, and the upper- and lower-levels interact with each other. The optimal targets of the upper- and lower-level models are −115,848 ¥ and 57,131,102 ¥, respectively. (2) The robust optimization theory improves the ability of a system to deal with risks. Robust optimization theory improves the ability of a system to deal with risks. With an increase in the robustness coefficient, the profit space of the upper-level model increases; however, the operation cost of the lower-level model increases.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
TT完成签到,获得积分10
2秒前
nenoaowu发布了新的文献求助10
3秒前
小二郎应助2022H采纳,获得20
4秒前
5秒前
科研通AI5应助大泥鳅采纳,获得10
7秒前
hr关闭了hr文献求助
7秒前
小康找文献完成签到 ,获得积分10
8秒前
WUYONGSHUAI发布了新的文献求助10
11秒前
mingming完成签到,获得积分10
14秒前
灵寒完成签到 ,获得积分10
14秒前
fhz发布了新的文献求助10
14秒前
16秒前
舒服的踏歌完成签到,获得积分10
16秒前
Owen应助奶昔采纳,获得10
19秒前
高圆圆发布了新的文献求助10
19秒前
22秒前
24秒前
qianshu发布了新的文献求助10
24秒前
科研通AI2S应助科研通管家采纳,获得10
25秒前
26秒前
科研通AI5应助科研通管家采纳,获得10
26秒前
卡卡西应助科研通管家采纳,获得10
26秒前
慕青应助科研通管家采纳,获得10
26秒前
Akim应助科研通管家采纳,获得10
26秒前
所所应助科研通管家采纳,获得10
26秒前
科研通AI2S应助科研通管家采纳,获得10
26秒前
李健应助科研通管家采纳,获得10
26秒前
27秒前
熊小子爱学习完成签到,获得积分10
28秒前
童了个童发布了新的文献求助10
30秒前
缥缈夏彤完成签到,获得积分10
30秒前
Song完成签到,获得积分10
32秒前
年轻的飞风完成签到,获得积分10
35秒前
奋斗小松鼠完成签到,获得积分10
40秒前
41秒前
43秒前
团团发布了新的文献求助10
49秒前
猪猪hero应助PureKK采纳,获得10
51秒前
不过敏的橙子完成签到,获得积分10
52秒前
53秒前
高分求助中
Basic Discrete Mathematics 1000
Technologies supporting mass customization of apparel: A pilot project 600
Introduction to Strong Mixing Conditions Volumes 1-3 500
Tip60 complex regulates eggshell formation and oviposition in the white-backed planthopper, providing effective targets for pest control 400
A Field Guide to the Amphibians and Reptiles of Madagascar - Frank Glaw and Miguel Vences - 3rd Edition 400
China Gadabouts: New Frontiers of Humanitarian Nursing, 1941–51 400
The Healthy Socialist Life in Maoist China, 1949–1980 400
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3799219
求助须知:如何正确求助?哪些是违规求助? 3344889
关于积分的说明 10322248
捐赠科研通 3061362
什么是DOI,文献DOI怎么找? 1680250
邀请新用户注册赠送积分活动 806929
科研通“疑难数据库(出版商)”最低求助积分说明 763451