Effects of Archive Size on Computation Time and Solution Quality for Multiobjective Optimization

计算 集合(抽象数据类型) 计算机科学 质量(理念) 人口 进化计算 选择(遗传算法) 人口规模 解决方案集 数学优化 算法 数学 人工智能 物理 社会学 人口学 程序设计语言 量子力学
作者
Tianye Shu,Ke Shang,Hisao Ishibuchi,Yang Nan
出处
期刊:IEEE Transactions on Evolutionary Computation [Institute of Electrical and Electronics Engineers]
卷期号:27 (4): 1145-1153 被引量:1
标识
DOI:10.1109/tevc.2022.3219521
摘要

An unbounded external archive has been used to store all nondominated solutions found by an evolutionary multiobjective optimization algorithm in some studies. It has been shown that a selected solution subset from the stored solutions is often better than the final population. However, the use of the unbounded archive is not always realistic. When the number of examined solutions is huge, we must prespecify the archive size. In this study, we examine the effects of the archive size on three aspects: 1) the quality of the selected final solution set; 2) the total computation time for the archive maintenance and the final solution set selection; and 3) the required memory size. Unsurprisingly, the increase of the archive size improves the final solution set quality. Interestingly, the total computation time of a medium-size archive is much larger than that of a small-size archive and a huge-size archive (e.g., an unbounded archive). To decrease the computation time, we examine two ideas: 1) periodical archive update and 2) archiving only in later generations. Compared with updating the archive at every generation, the first idea can obtain almost the same final solution set quality using a much shorter computation time at the cost of a slight increase of the memory size. The second idea drastically decreases the computation time at the cost of a slight deterioration of the final solution set quality. Based on our experimental results, some suggestions are given about how to appropriately choose an archiving strategy and an archive size.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
蛋子完成签到 ,获得积分10
1秒前
2秒前
2秒前
2秒前
2秒前
冰魂应助赖雅迪采纳,获得10
2秒前
2秒前
3秒前
3秒前
顾矜应助北落采纳,获得10
3秒前
3秒前
3秒前
Hou完成签到 ,获得积分10
3秒前
4秒前
4秒前
4秒前
5秒前
5秒前
5秒前
5秒前
5秒前
5秒前
6秒前
6秒前
bkagyin应助危机的慕卉采纳,获得10
6秒前
San_Chen发布了新的文献求助10
6秒前
ll发布了新的文献求助10
7秒前
tanghong发布了新的文献求助10
7秒前
Ciaoh发布了新的文献求助10
9秒前
psycho完成签到,获得积分10
10秒前
Gstar发布了新的文献求助10
10秒前
安静幻竹发布了新的文献求助10
12秒前
12秒前
高高雅青完成签到,获得积分10
12秒前
哎嘿完成签到,获得积分10
14秒前
MOLLY发布了新的文献求助10
14秒前
敏感的钢铁侠完成签到,获得积分10
15秒前
zz发布了新的文献求助10
16秒前
16秒前
可爱语堂完成签到,获得积分10
16秒前
高分求助中
Les Mantodea de Guyane Insecta, Polyneoptera 2500
Introduction to Strong Mixing Conditions Volumes 1-3 500
China—Art—Modernity: A Critical Introduction to Chinese Visual Expression from the Beginning of the Twentieth Century to the Present Day 430
A Field Guide to the Amphibians and Reptiles of Madagascar - Frank Glaw and Miguel Vences - 3rd Edition 400
China Gadabouts: New Frontiers of Humanitarian Nursing, 1941–51 400
The Healthy Socialist Life in Maoist China, 1949–1980 400
Walking a Tightrope: Memories of Wu Jieping, Personal Physician to China's Leaders 400
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3796952
求助须知:如何正确求助?哪些是违规求助? 3342260
关于积分的说明 10310506
捐赠科研通 3059001
什么是DOI,文献DOI怎么找? 1678626
邀请新用户注册赠送积分活动 806164
科研通“疑难数据库(出版商)”最低求助积分说明 762933