Prediction of Early Neoadjuvant Chemotherapy Response of Breast Cancer through Deep Learning-based Pharmacokinetic Quantification of DCE MRI

概化理论 医学 乳腺癌 逻辑回归 接收机工作特性 回顾性队列研究 放射科 人工智能 肿瘤科 癌症 内科学 计算机科学 统计 数学
作者
Chaowei Wu,Lixia Wang,Nan Wang,Stephen L. Shiao,T Dou,Yin-Chen Hsu,Anthony G. Christodoulou,Yibin Xie,Debiao Li
出处
期刊:Radiology [Radiological Society of North America]
标识
DOI:10.1148/ryai.240769
摘要

“Just Accepted” papers have undergone full peer review and have been accepted for publication in Radiology: Artificial Intelligence. This article will undergo copyediting, layout, and proof review before it is published in its final version. Please note that during production of the final copyedited article, errors may be discovered which could affect the content. Purpose To improve the generalizability of pathologic complete response (pCR) prediction following neoadjuvant chemotherapy using deep learning (DL)-based retrospective pharmacokinetic quantification (RoQ) of early-treatment dynamic contrast-enhanced (DCE) MRI. Materials and Methods This multicenter retrospective study included breast MRI data from four publicly available datasets of patients with breast cancer acquired from May 2002 to November 2016. RoQ was performed using a previously developed DL model for clinical multiphasic DCE-MRI datasets. Radiomic analysis was performed on RoQ maps and conventional enhancement maps. These data, together with clinicopathologic variables and shape-based radiomic analysis, were subsequently applied in pCR prediction using logistic regression. Prediction performance was evaluated by area under the receiver operating characteristic curve (AUC). Results A total of 1073 female patients with breast cancer were included. The proposed method showed improved consistency and generalizability compared with the reference method, achieving higher AUCs across external datasets (0.82 [CI: 0.72–0.91], 0.75 [CI: 0.71–0.79], and 0.77 [CI: 0.66–0.86] for Datasets A2, B, and C, respectively). On Dataset A2 (from the same study as the training dataset), there was no significant difference in performance between the proposed method and reference method ( P = .80). Notably, on the combined external datasets, the proposed method significantly outperformed the reference method (AUC: 0.75 [CI: 0.72– 0.79] vs 0.71 [CI: 0.68–0.76], P = .003). Conclusion This work offers a novel approach to improve the generalizability and predictive accuracy of pCR response in breast cancer across diverse datasets, achieving higher and more consistent AUC scores than existing methods. ©RSNA, 2025
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
oguricap发布了新的文献求助10
1秒前
可爱的函函应助宗语雪采纳,获得10
2秒前
2秒前
椒盐鲨鱼皮完成签到,获得积分10
2秒前
冷静夜蕾发布了新的文献求助10
3秒前
欢呼的开山完成签到,获得积分10
3秒前
azang完成签到,获得积分10
3秒前
Yangon完成签到,获得积分10
5秒前
oguricap完成签到,获得积分10
6秒前
6秒前
无辜的白秋完成签到,获得积分10
6秒前
6秒前
xin发布了新的文献求助10
6秒前
7秒前
科目三应助兰蕙采纳,获得10
9秒前
9秒前
Flex完成签到,获得积分10
9秒前
10秒前
11秒前
斯文败类应助白笑石采纳,获得10
12秒前
枕安完成签到,获得积分10
13秒前
秋半梦发布了新的文献求助10
13秒前
15秒前
友好板栗完成签到,获得积分10
16秒前
李健应助大侦探皮卡丘采纳,获得10
16秒前
17秒前
Asen完成签到,获得积分10
19秒前
鲸落完成签到 ,获得积分10
19秒前
世上无难事完成签到,获得积分20
20秒前
小小发布了新的文献求助10
20秒前
paulin完成签到,获得积分10
20秒前
21秒前
mmmwwwx发布了新的文献求助10
21秒前
21秒前
snakersnaker发布了新的文献求助10
22秒前
22秒前
端庄卿发布了新的文献求助10
23秒前
23秒前
ding应助友好板栗采纳,获得10
24秒前
jenningseastera应助Weedy采纳,获得10
26秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Manipulating the Mouse Embryo: A Laboratory Manual, Fourth Edition 1000
Determination of the boron concentration in diamond using optical spectroscopy 600
The Netter Collection of Medical Illustrations: Digestive System, Volume 9, Part III - Liver, Biliary Tract, and Pancreas (3rd Edition) 600
Advances in Motivation Science 500
Founding Fathers The Shaping of America 500
A new house rat (Mammalia: Rodentia: Muridae) from the Andaman and Nicobar Islands 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 催化作用 遗传学 冶金 电极 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 4550741
求助须知:如何正确求助?哪些是违规求助? 3980647
关于积分的说明 12324233
捐赠科研通 3649775
什么是DOI,文献DOI怎么找? 2010153
邀请新用户注册赠送积分活动 1045469
科研通“疑难数据库(出版商)”最低求助积分说明 933935