Risk predicting for acute coronary syndrome with conventional and unstable plaque radiomics features from serial coronary computed tomography angiography

医学 急性冠脉综合征 无线电技术 放射科 心脏病学 内科学 队列 入射(几何) 心肌梗塞 光学 物理
作者
Tao Sun,Feng Cao,Shen Gao,Y B Wang,Aoyu Li,Xia Wang,Fang Yan,Z Y Fang,S L Li
出处
期刊:European Heart Journal [Oxford University Press]
卷期号:44 (Supplement_2)
标识
DOI:10.1093/eurheartj/ehad655.2656
摘要

Abstract Background Plaques with high-risk features are responsible for most acute cardiac events. However, there are still some lesions with high-risk plaque (HRP) morphology, which will not lead to cardiac events over time. It is crucial to precisely identify features of unstable plaque and to carry out individualized treatment, eventually aiming to reduce the likelihood of plaque rupture and lower the incidence of acute coronary events. Besides, the development of quantitative radiomics in recent years may further help with the diagnostic and predictive performance of coronary CTA. Purpose To establish machine learning models by combining traditional coronary CTA features of high-risk plaque and radiomics features of unstable plaque, so as to improve the efficiency of models and to predict acute cardiac events precisely. Methods A total of 133 elderly patients (407 lesions) were retrospectively enrolled in this cohort study who underwent serial CCTA with the interval ≥ 2 years between scans. The patients were divided into two groups according to the occurrence of acute coronary events within 1 year after coronary CTA scanning . We recorded anatomical characteristics, high-risk plaque characteristics, and acute coronary events of the elderly patients. Based on the coronary CTA image cohort, we applied 3D Slicer software to segment target lesions, delineate regions of interest, and extract radiomics features. After that, we used LASSO regression to reduce the dimensionality of the radiomics features, and finally screened out unstable radiomics features. Combining the HRP features with the selected radiomics features, we established a prediction model of acute cardiac events with machine learning method. The area under the receiver operating characteristic (ROC) curve (AUC) was analyzed to compare the classification ability of conventional and radiomics models in the validation set. Results 133 elderly patients were included, with an average age of 65.8 ± 5.3 years. A novel model has been established by combining HRP features and 4 selected unstable radiomics features (2 wavelet features, 1 shape feature and 1 GrayLevel feature) with SVM machine learning method. Compared with conventional HRP model, the novel model displayed a significantly improved predictive performance in the validation set (AUC 0.784 vs. 0.624, P < 0.001). Conclusions We have established a novel model by combining the traditional HRP features of coronary CTA and radiomics features of unstable plaque, assisting in better prediction of acute coronary events in elderly . Compared with traditional HRP feature model, the prediction efficiency of novel model was significantly improved.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
Tian发布了新的文献求助10
1秒前
科研通AI5应助mtt采纳,获得10
2秒前
2秒前
乐乐应助Summeryz920采纳,获得10
4秒前
lulu828完成签到,获得积分10
4秒前
哈哈发布了新的文献求助10
6秒前
彭于晏应助哈利波特采纳,获得10
9秒前
Tian完成签到,获得积分10
9秒前
动听安筠完成签到 ,获得积分10
11秒前
13秒前
lh完成签到,获得积分10
14秒前
14秒前
15秒前
孤独士晋发布了新的文献求助10
15秒前
俭朴的凝荷完成签到,获得积分20
16秒前
打打应助张宇鑫采纳,获得10
16秒前
寒冷妙梦完成签到,获得积分10
18秒前
19秒前
19秒前
Summeryz920发布了新的文献求助10
20秒前
欣喜眼神发布了新的文献求助10
21秒前
21秒前
pluto应助祝好采纳,获得20
23秒前
pazuzu发布了新的文献求助10
25秒前
26秒前
完美世界应助lienne采纳,获得10
27秒前
Justinliken发布了新的文献求助10
32秒前
桐桐应助苏雨康采纳,获得10
32秒前
CodeCraft应助pazuzu采纳,获得10
33秒前
Summeryz920发布了新的文献求助10
36秒前
简单的大白完成签到,获得积分10
36秒前
37秒前
37秒前
38秒前
38秒前
39秒前
39秒前
40秒前
明亮无颜发布了新的文献求助30
41秒前
搜集达人应助健壮的绿凝采纳,获得10
41秒前
高分求助中
【此为提示信息,请勿应助】请按要求发布求助,避免被关 20000
ISCN 2024 – An International System for Human Cytogenomic Nomenclature (2024) 3000
Continuum Thermodynamics and Material Modelling 2000
Encyclopedia of Geology (2nd Edition) 2000
105th Edition CRC Handbook of Chemistry and Physics 1600
Maneuvering of a Damaged Navy Combatant 650
Mindfulness and Character Strengths: A Practitioner's Guide to MBSP 380
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3776802
求助须知:如何正确求助?哪些是违规求助? 3322227
关于积分的说明 10209363
捐赠科研通 3037491
什么是DOI,文献DOI怎么找? 1666749
邀请新用户注册赠送积分活动 797627
科研通“疑难数据库(出版商)”最低求助积分说明 757976