Leaf Area Index Inversion of Spartina alterniflora Using UAV Hyperspectral Data Based on Multiple Optimized Machine Learning Algorithms

高光谱成像 互花米草 叶面积指数 遥感 均方误差 算法 数学 计算机科学 环境科学 人工智能 统计 地质学 生态学 湿地 沼泽 生物
作者
Hua Fang,Weidong Man,Mingyue Liu,Yongbin Zhang,Xingtong Chen,Xiang Li,Jiannan He,Di Tian
出处
期刊:Remote Sensing [MDPI AG]
卷期号:15 (18): 4465-4465 被引量:12
标识
DOI:10.3390/rs15184465
摘要

The leaf area index (LAI) is an essential biophysical parameter for describing the vegetation canopy structure and predicting its growth and productivity. Using unmanned aerial vehicle (UAV) hyperspectral imagery to accurately estimate the LAI is of great significance for Spartina alterniflora (S. alterniflora) growth status monitoring. In this study, UAV hyperspectral imagery and the LAI of S. alterniflora during the flourishing growth period were acquired. The hyperspectral data were preprocessed with Savitzky–Golay (SG) smoothing, and the first derivative (FD) and the second derivative (SD) spectral transformations of the data were then carried out. Then, using the band combination index (BCI) method, the characteristic bands related to the LAI were extracted from the hyperspectral image data obtained with the UAV, and spectral indices (SIs) were constructed through the characteristic bands. Finally, three machine learning (ML) regression methods—optimized support vector regression (OSVR), optimized random forest regression (ORFR), and optimized extreme gradient boosting regression (OXGBoostR)—were used to establish LAI estimation models. The results showed the following: (1) the three ML methods accurately predicted the LAI, and the optimal model was provided by the ORFR method, with an R2 of 0.85, an RMSE of 0.19, and an RPD of 4.33; (2) the combination of FD SIs improved the model accuracy, with the R2 value improving by 41.7%; (3) the band combinations screened using the BCI method were mainly concentrated in the red and near-infrared bands; (4) the higher LAI was distributed on the seaward side of the study area, while the lower LAI was located at the junction between the S. alterniflora and the tidal flat. This study serves as both theoretical and technological support for research on the LAI of S. alterniflora and as a solid foundation for the use of UAV remote sensing technologies in the supervisory control of S. alterniflora.

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
刚刚
FashionBoy应助胡蔚然采纳,获得10
刚刚
tsw发布了新的文献求助10
刚刚
无极微光应助易玟采纳,获得20
刚刚
zrw完成签到,获得积分10
刚刚
1秒前
小刚大王完成签到,获得积分10
1秒前
喔喔喔哦wo完成签到,获得积分10
2秒前
科研通AI6应助lize5493采纳,获得10
2秒前
ZhihaoYang发布了新的文献求助10
2秒前
此生长安完成签到,获得积分10
2秒前
桐桐应助Skywalker采纳,获得10
2秒前
3秒前
CHENCHENG发布了新的文献求助10
3秒前
成就寄柔关注了科研通微信公众号
3秒前
愤怒的小甜瓜完成签到 ,获得积分10
3秒前
97驳回了bkagyin应助
3秒前
3秒前
小罗萝卜完成签到,获得积分10
4秒前
LYH发布了新的文献求助30
4秒前
4秒前
搜集达人应助hh采纳,获得10
4秒前
映冬发布了新的文献求助10
4秒前
21发布了新的文献求助10
4秒前
于子超完成签到,获得积分10
4秒前
海之语完成签到,获得积分10
4秒前
酷波er应助wtc采纳,获得10
4秒前
此生长安发布了新的文献求助10
5秒前
5秒前
5秒前
坚定傲珊发布了新的文献求助10
5秒前
5秒前
量子星尘发布了新的文献求助10
6秒前
wzc完成签到 ,获得积分10
6秒前
6秒前
Daisy发布了新的文献求助10
7秒前
7秒前
8秒前
8秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
List of 1,091 Public Pension Profiles by Region 1561
Specialist Periodical Reports - Organometallic Chemistry Organometallic Chemistry: Volume 46 1000
Current Trends in Drug Discovery, Development and Delivery (CTD4-2022) 800
Foregrounding Marking Shift in Sundanese Written Narrative Segments 600
Holistic Discourse Analysis 600
Beyond the sentence: discourse and sentential form / edited by Jessica R. Wirth 600
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 遗传学 催化作用 冶金 量子力学 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 5519632
求助须知:如何正确求助?哪些是违规求助? 4611732
关于积分的说明 14529813
捐赠科研通 4549100
什么是DOI,文献DOI怎么找? 2492759
邀请新用户注册赠送积分活动 1473857
关于科研通互助平台的介绍 1445710