Integrating artificial intelligence in drug discovery and early drug development: a transformative approach

计算机科学 药物开发 药物发现 数据科学 鉴定(生物学) 人工智能 转化式学习 风险分析(工程) 医学 药品 生物信息学 心理学 教育学 植物 精神科 生物
作者
Alberto Ocaña,Atanasio Pandiella,Cristian Privat,Iván Bravo,Miguel Luengo-Oroz,Eitan Amir,Balázs Győrffy
出处
期刊:Biomarker research [BioMed Central]
卷期号:13 (1)
标识
DOI:10.1186/s40364-025-00758-2
摘要

Abstract Artificial intelligence (AI) can transform drug discovery and early drug development by addressing inefficiencies in traditional methods, which often face high costs, long timelines, and low success rates. In this review we provide an overview of how to integrate AI to the current drug discovery and development process, as it can enhance activities like target identification, drug discovery, and early clinical development. Through multiomics data analysis and network-based approaches, AI can help to identify novel oncogenic vulnerabilities and key therapeutic targets. AI models, such as AlphaFold, predict protein structures with high accuracy, aiding druggability assessments and structure-based drug design. AI also facilitates virtual screening and de novo drug design, creating optimized molecular structures for specific biological properties. In early clinical development, AI supports patient recruitment by analyzing electronic health records and improves trial design through predictive modeling, protocol optimization, and adaptive strategies. Innovations like synthetic control arms and digital twins can reduce logistical and ethical challenges by simulating outcomes using real-world or virtual patient data. Despite these advancements, limitations remain. AI models may be biased if trained on unrepresentative datasets, and reliance on historical or synthetic data can lead to overfitting or lack generalizability. Ethical and regulatory issues, such as data privacy, also challenge the implementation of AI. In conclusion, in this review we provide a comprehensive overview about how to integrate AI into current processes. These efforts, although they will demand collaboration between professionals, and robust data quality, have a transformative potential to accelerate drug development.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
1秒前
科研通AI5应助psycan采纳,获得10
1秒前
SUSUMA完成签到,获得积分10
3秒前
KevenDing发布了新的文献求助20
3秒前
4秒前
追寻清完成签到,获得积分10
6秒前
Jasper应助活泼的诗兰采纳,获得10
7秒前
7秒前
标致雁发布了新的文献求助10
7秒前
7秒前
柳叶洋完成签到,获得积分10
8秒前
8秒前
RATHER完成签到,获得积分10
9秒前
9秒前
不改颜色的孤星完成签到,获得积分10
11秒前
roddie发布了新的文献求助10
11秒前
12秒前
Sherlock完成签到,获得积分10
12秒前
sunny发布了新的文献求助10
13秒前
psycan发布了新的文献求助10
13秒前
大个应助马大王采纳,获得10
13秒前
13秒前
hope完成签到,获得积分10
14秒前
不二家完成签到,获得积分10
14秒前
ysjx完成签到,获得积分10
15秒前
褚笑卉发布了新的文献求助10
17秒前
18秒前
qq158014169完成签到 ,获得积分10
18秒前
19秒前
20秒前
20秒前
望其项背发布了新的文献求助10
22秒前
斯文的芫完成签到,获得积分10
23秒前
yaolei完成签到,获得积分10
24秒前
柔弱熊猫发布了新的文献求助10
25秒前
鱼儿崽崽发布了新的文献求助10
25秒前
25秒前
魏晓宇给魏晓宇的求助进行了留言
26秒前
领导范儿应助caimiemie采纳,获得10
26秒前
火星上的如松完成签到,获得积分10
28秒前
高分求助中
Technologies supporting mass customization of apparel: A pilot project 600
Introduction to Strong Mixing Conditions Volumes 1-3 500
Tip60 complex regulates eggshell formation and oviposition in the white-backed planthopper, providing effective targets for pest control 400
A Field Guide to the Amphibians and Reptiles of Madagascar - Frank Glaw and Miguel Vences - 3rd Edition 400
China Gadabouts: New Frontiers of Humanitarian Nursing, 1941–51 400
The Healthy Socialist Life in Maoist China, 1949–1980 400
Walking a Tightrope: Memories of Wu Jieping, Personal Physician to China's Leaders 400
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3800187
求助须知:如何正确求助?哪些是违规求助? 3345479
关于积分的说明 10325346
捐赠科研通 3061960
什么是DOI,文献DOI怎么找? 1680695
邀请新用户注册赠送积分活动 807172
科研通“疑难数据库(出版商)”最低求助积分说明 763539