A Transformer-based Hybrid Model for Implicit Emotion Recognition in Arabic Text

变压器 阿拉伯语 自然语言处理 计算机科学 语音识别 情绪识别 人工智能 语言学 工程类 电气工程 电压 哲学
作者
Hanane Boutouta,Abdelaziz Lakhfif,Ferial Senator,Chahrazed Mediani
出处
期刊:Engineering, Technology & Applied Science Research [Engineering, Technology & Applied Science Research]
卷期号:15 (3): 23834-23839
标识
DOI:10.48084/etasr.10261
摘要

Implicit emotion recognition has emerged as an active area of research in modern Natural Language Processing (NLP). Unlike explicit emotions, which are directly expressed through emotional words, implicit emotions are inferred from the surrounding context, making their detection more challenging. While most research in Arabic NLP has focused on recognizing explicit emotions, the study of implicit emotions remains largely unexplored, primarily due to its unique linguistic and morphological characteristics. The current study addresses this gap by compiling an Arabic dataset for the implicit emotion recognition task, named Arabic Implicit Emotion Dataset (AIEmoD), which is curated from existing publicly available explicit emotion datasets. Furthermore, it proposes a novel hybrid deep learning model that integrates the Arabic transformer-based AraBERT model with a Bidirectional Gated Recurrent Units (BiGRU) network to recognize and classify implicit emotions in Arabic text. The proposed AraBERT-BiGRU model was evaluated on two widely used Arabic emotion datasets, AETD and SemEval-2018, in addition to the newly compiled AIEmoD dataset. The results show that the model achieved F1-scores of 79.87% on AETD and 70.67% on AIEmoD, significantly outperforming deep learning baseline methods. Moreover, the proposed model surpassed current state-of-the-art approaches for explicit emotion recognition, even when applied to the more challenging task of implicit emotion detection. These findings highlight the effectiveness and robustness of the proposed AraBERT-BiGRU model in recognizing implicit emotions in Arabic text.

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
Whc关注了科研通微信公众号
1秒前
陶燕玲发布了新的文献求助10
4秒前
尊敬莺发布了新的文献求助10
4秒前
5秒前
5秒前
LH完成签到,获得积分10
5秒前
babe发布了新的文献求助10
6秒前
7秒前
孙行者完成签到,获得积分10
7秒前
伊宸完成签到,获得积分20
8秒前
木印天发布了新的文献求助10
8秒前
9秒前
木木发布了新的文献求助10
10秒前
Owen应助潇湘雪月采纳,获得10
12秒前
13秒前
13秒前
猪猪hero应助JUST采纳,获得10
15秒前
15秒前
16秒前
16秒前
张六六完成签到 ,获得积分10
16秒前
机智珠完成签到,获得积分10
17秒前
17秒前
孙行者发布了新的文献求助10
17秒前
jmsfasw发布了新的文献求助10
19秒前
沸羊羊完成签到,获得积分10
19秒前
赵琼珍发布了新的文献求助10
19秒前
糖豆子完成签到,获得积分10
20秒前
20秒前
20秒前
1nbnbnb1完成签到,获得积分10
20秒前
朱冰蓝完成签到,获得积分10
20秒前
21秒前
gggja发布了新的文献求助10
21秒前
Whc发布了新的文献求助10
21秒前
靳顺康完成签到,获得积分10
21秒前
机智珠发布了新的文献求助10
22秒前
22秒前
22秒前
高分求助中
Ophthalmic Equipment Market by Devices(surgical: vitreorentinal,IOLs,OVDs,contact lens,RGP lens,backflush,diagnostic&monitoring:OCT,actorefractor,keratometer,tonometer,ophthalmoscpe,OVD), End User,Buying Criteria-Global Forecast to2029 2000
A new approach to the extrapolation of accelerated life test data 1000
Cognitive Neuroscience: The Biology of the Mind 1000
Technical Brochure TB 814: LPIT applications in HV gas insulated switchgear 1000
不知道标题是什么 500
A Preliminary Study on Correlation Between Independent Components of Facial Thermal Images and Subjective Assessment of Chronic Stress 500
Phylogenetic study of the order Polydesmida (Myriapoda: Diplopoda) 360
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 3964064
求助须知:如何正确求助?哪些是违规求助? 3509920
关于积分的说明 11149596
捐赠科研通 3243734
什么是DOI,文献DOI怎么找? 1792185
邀请新用户注册赠送积分活动 873628
科研通“疑难数据库(出版商)”最低求助积分说明 803839