亲爱的研友该休息了!由于当前在线用户较少,发布求助请尽量完整地填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!身体可是革命的本钱,早点休息,好梦!

End-to-end prognostication in pancreatic cancer by multimodal deep learning: a retrospective, multicenter study

医学 胰腺癌 胰腺导管腺癌 神经组阅片室 阶段(地层学) 接收机工作特性 内科学 队列 回顾性队列研究 肿瘤科 介入放射学 癌症 放射科 神经学 精神科 古生物学 生物
作者
Megan Schuurmans,Anindo Saha,Natália Alves,Pierpaolo Vendittelli,Derya Yakar,Sergio Sabroso‐Lasa,Nannan Xue,Núria Malats,Henkjan Huisman,John J. Hermans,Geert Litjens
出处
期刊:European Radiology [Springer Science+Business Media]
标识
DOI:10.1007/s00330-025-11694-y
摘要

Abstract Objectives Pancreatic cancer treatment plans involving surgery and/or chemotherapy are highly dependent on disease stage. However, current staging systems are ineffective and poorly correlated with survival outcomes. We investigate how artificial intelligence (AI) can enhance prognostic accuracy in pancreatic cancer by integrating multiple data sources. Materials and methods Patients with histopathology and/or radiology/follow-up confirmed pancreatic ductal adenocarcinoma (PDAC) from a Dutch center (2004–2023) were included in the development cohort. Two additional PDAC cohorts from a Dutch and Spanish center were used for external validation. Prognostic models including clinical variables, contrast-enhanced CT images, and a combination of both were developed to predict high-risk short-term survival. All models were trained using five-fold cross-validation and assessed by the area under the time-dependent receiver operating characteristic curve (AUC). Results The models were developed on 401 patients (203 females, 198 males, median survival (OS) = 347 days, IQR: 171–585), with 98 (24.4%) short-term survivors (OS < 230 days) and 303 (75.6%) long-term survivors. The external validation cohorts included 361 patients (165 females, 138 males, median OS = 404 days, IQR: 173–736), with 110 (30.5%) short-term survivors and 251 (69.5%) longer survivors. The best AUC for predicting short vs. long-term survival was achieved with the multi-modal model (AUC = 0.637 (95% CI: 0.500–0.774)) in the internal validation set. External validation showed AUCs of 0.571 (95% CI: 0.453–0.689) and 0.675 (95% CI: 0.593–0.757). Conclusion Multimodal AI can predict long vs. short-term survival in PDAC patients, showing potential as a prognostic tool in clinical decision-making. Key Points Question Prognostic tools for pancreatic ductal adenocarcinoma (PDAC) remain limited, with TNM staging offering suboptimal accuracy in predicting patient survival outcomes. Findings The multimodal AI model demonstrated improved prognostic performance over TNM and unimodal models for predicting short- and long-term survival in PDAC patients. Clinical relevance Multimodal AI provides enhanced prognostic accuracy compared to current staging systems, potentially improving clinical decision-making and personalized management strategies for PDAC patients. Graphical Abstract
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
gexzygg应助科研通管家采纳,获得10
5秒前
5秒前
量子星尘发布了新的文献求助10
23秒前
Simpson完成签到 ,获得积分10
48秒前
量子星尘发布了新的文献求助30
1分钟前
英姑应助科研通管家采纳,获得10
2分钟前
2分钟前
彤光赫显完成签到 ,获得积分10
2分钟前
wodetaiyangLLL完成签到 ,获得积分10
2分钟前
2分钟前
无花果应助天秤小兔兔采纳,获得10
3分钟前
不配.应助AireenBeryl531采纳,获得200
3分钟前
3分钟前
wzgkeyantong发布了新的文献求助10
3分钟前
3分钟前
量子星尘发布了新的文献求助10
3分钟前
所所应助科研通管家采纳,获得10
4分钟前
脑洞疼应助科研通管家采纳,获得10
4分钟前
4分钟前
勤奋完成签到,获得积分0
4分钟前
4分钟前
4分钟前
调皮冰旋完成签到,获得积分10
4分钟前
调皮冰旋发布了新的文献求助10
4分钟前
科目三应助有点意思采纳,获得10
4分钟前
5分钟前
量子星尘发布了新的文献求助10
5分钟前
镜小小静完成签到,获得积分10
5分钟前
5分钟前
x夏天完成签到 ,获得积分10
6分钟前
大力完成签到 ,获得积分10
6分钟前
123完成签到 ,获得积分10
6分钟前
bji完成签到,获得积分10
6分钟前
量子星尘发布了新的文献求助10
7分钟前
8分钟前
CodeCraft应助有点意思采纳,获得10
8分钟前
天秤小兔兔完成签到,获得积分20
8分钟前
有点意思发布了新的文献求助10
8分钟前
8分钟前
8分钟前
高分求助中
(应助此贴封号)【重要!!请各位详细阅读】【科研通的精品贴汇总】 10000
Organic Chemistry 1500
The Netter Collection of Medical Illustrations: Digestive System, Volume 9, Part III - Liver, Biliary Tract, and Pancreas (3rd Edition) 600
Introducing Sociology Using the Stuff of Everyday Life 400
Conjugated Polymers: Synthesis & Design 400
Picture Books with Same-sex Parented Families: Unintentional Censorship 380
Metals, Minerals, and Society 300
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 4261780
求助须知:如何正确求助?哪些是违规求助? 3794728
关于积分的说明 11899332
捐赠科研通 3441753
什么是DOI,文献DOI怎么找? 1888780
邀请新用户注册赠送积分活动 939502
科研通“疑难数据库(出版商)”最低求助积分说明 844525