Weld defects detection based on improved YOLO-V7

计算机科学 人工智能
作者
Dongjie Li,Tao Yang,Mingrui Wang
出处
期刊:Engineering research express [IOP Publishing]
被引量:1
标识
DOI:10.1088/2631-8695/addc35
摘要

Abstract The automated manufacturing process frequently calls for welding operations, but welding mistakes can cause weld defects to appear. If weld defects are not promptly and accurately detected, they can cause property damage and endanger personal safety. For the first time, this study introduces a model based on the enhanced YOLO-V7 detection system to identify eight categories, which comprise seven defects categories and a good class of welding. This model addresses the existing poor accuracy of weld defects identification, and detection of fewer types of issues. Firstly, Wise-IOU is employed to swap out the original boundary frame loss function CIOU, and the quality of the anchor frame is evaluated using "outlier" instead of the original IOU, and a wise technique for gradient gain allocation is provided to enhance the overall performance of the detector. Next, the Distributed Shift Convolution (DSConv) is introduced to replace the original module to form a new ELAN-D module, which achieves lower memory usage and higher computing speed. Then, the lightweight CARAFE upsampling operator is used to replace the original model upsampling operator. Finally, the YOLO-V7 detection head is replaced with the YOLO-V6 decoupled detection head, but the part of the original model with implicit knowledge learning is retained to make its head detection more efficient. The experimental findings demonstrate that the approach achieves an F1 factor of 84.0%, a precision of 84.1%, a recall of 84.4%, and a mAP of 88.9% on the weld defects datasets, and the combination of the above aspects shows that the current enhanced model outperforms other models.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
科研王完成签到 ,获得积分10
3秒前
JamesPei应助柯童i采纳,获得10
3秒前
4秒前
niu完成签到,获得积分10
5秒前
向阳而生完成签到,获得积分10
6秒前
8秒前
英俊的铭应助lerrygg采纳,获得20
9秒前
脆脆鲨完成签到,获得积分10
10秒前
pokexuejiao发布了新的文献求助30
10秒前
桐桐应助桃之夭夭采纳,获得10
10秒前
13秒前
浅陌完成签到,获得积分10
14秒前
在水一方应助阿信苏采纳,获得30
14秒前
科目三应助duoduo采纳,获得10
14秒前
15秒前
17秒前
科研大白完成签到,获得积分10
19秒前
yyyyy发布了新的文献求助10
20秒前
啊哦啊哦啊哦完成签到 ,获得积分10
21秒前
21秒前
22秒前
23秒前
柚子皮完成签到,获得积分20
24秒前
1356发布了新的文献求助10
24秒前
今后应助lmm采纳,获得10
24秒前
今天只做一件事应助熊大采纳,获得10
26秒前
柔弱曼冬发布了新的文献求助10
28秒前
Tushar发布了新的文献求助30
29秒前
隐形曼青应助Tom47采纳,获得10
29秒前
duoduo发布了新的文献求助10
29秒前
彭于晏应助wanhe采纳,获得10
31秒前
脑洞疼应助小乔采纳,获得10
33秒前
今后应助1356采纳,获得10
34秒前
34秒前
滚雪球的Dr Gao完成签到 ,获得积分10
36秒前
36秒前
38秒前
香蕉觅云应助火花采纳,获得10
38秒前
39秒前
Jasper应助KL采纳,获得10
39秒前
高分求助中
(应助此贴封号)【重要!!请各位详细阅读】【科研通的精品贴汇总】 10000
Les Mantodea de Guyane: Insecta, Polyneoptera [The Mantids of French Guiana] 3000
F-35B V2.0 How to build Kitty Hawk's F-35B Version 2.0 Model 2500
줄기세포 생물학 1000
The Netter Collection of Medical Illustrations: Digestive System, Volume 9, Part III - Liver, Biliary Tract, and Pancreas (3rd Edition) 600
INQUIRY-BASED PEDAGOGY TO SUPPORT STEM LEARNING AND 21ST CENTURY SKILLS: PREPARING NEW TEACHERS TO IMPLEMENT PROJECT AND PROBLEM-BASED LEARNING 500
2025-2031全球及中国蛋黄lgY抗体行业研究及十五五规划分析报告(2025-2031 Global and China Chicken lgY Antibody Industry Research and 15th Five Year Plan Analysis Report) 400
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 4482813
求助须知:如何正确求助?哪些是违规求助? 3938774
关于积分的说明 12218518
捐赠科研通 3594043
什么是DOI,文献DOI怎么找? 1976495
邀请新用户注册赠送积分活动 1013649
科研通“疑难数据库(出版商)”最低求助积分说明 906780