AbdomenAtlas: A large-scale, detailed-annotated, & multi-center dataset for efficient transfer learning and open algorithmic benchmarking

标杆管理 计算机科学 学习迁移 推论 人工智能 水准点(测量) 概化理论 注释 比例(比率) 机器学习 工作量 分割 众包 集合(抽象数据类型) 数据挖掘 地理 业务 营销 统计 物理 数学 大地测量学 量子力学 万维网 程序设计语言 操作系统
作者
Wenxuan Li,Chongyu Qu,Xiaoxi Chen,Pedro R. A. S. Bassi,Yijia Shi,Yuxiang Lai,Yu Qian,Huimin Xue,Yixiong Chen,Xiaorui Lin,Yutong Tang,Yining Cao,Haoqi Han,Zheyuan Zhang,J.D. Liu,Tiezheng Zhang,Yujiu Ma,Jincheng Wang,Guang Zhang,Alan Yuille
出处
期刊:Medical Image Analysis [Elsevier BV]
卷期号:97: 103285-103285 被引量:3
标识
DOI:10.1016/j.media.2024.103285
摘要

We introduce the largest abdominal CT dataset (termed AbdomenAtlas) of 20,460 three-dimensional CT volumes sourced from 112 hospitals across diverse populations, geographies, and facilities. AbdomenAtlas provides 673 K high-quality masks of anatomical structures in the abdominal region annotated by a team of 10 radiologists with the help of AI algorithms. We start by having expert radiologists manually annotate 22 anatomical structures in 5,246 CT volumes. Following this, a semi-automatic annotation procedure is performed for the remaining CT volumes, where radiologists revise the annotations predicted by AI, and in turn, AI improves its predictions by learning from revised annotations. Such a large-scale, detailed-annotated, and multi-center dataset is needed for two reasons. Firstly, AbdomenAtlas provides important resources for AI development at scale, branded as large pre-trained models, which can alleviate the annotation workload of expert radiologists to transfer to broader clinical applications. Secondly, AbdomenAtlas establishes a large-scale benchmark for evaluating AI algorithms—the more data we use to test the algorithms, the better we can guarantee reliable performance in complex clinical scenarios. An ISBI & MICCAI challenge named BodyMaps: Towards 3D Atlas of Human Body was launched using a subset of our AbdomenAtlas, aiming to stimulate AI innovation and to benchmark segmentation accuracy, inference efficiency, and domain generalizability. We hope our AbdomenAtlas can set the stage for larger-scale clinical trials and offer exceptional opportunities to practitioners in the medical imaging community. Codes, models, and datasets are available at https://www.zongweiz.com/dataset.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
刚刚
遥遥完成签到 ,获得积分10
1秒前
2秒前
vitamin发布了新的文献求助20
2秒前
安晨发布了新的文献求助10
3秒前
汉堡包应助sugkook采纳,获得10
4秒前
yujianhong发布了新的文献求助10
4秒前
Lynn完成签到 ,获得积分20
7秒前
7秒前
yang发布了新的文献求助10
7秒前
量子星尘发布了新的文献求助10
10秒前
12秒前
老盖完成签到,获得积分20
13秒前
禹代秋发布了新的文献求助10
16秒前
16秒前
AARON发布了新的文献求助10
17秒前
heisa完成签到,获得积分10
18秒前
19秒前
zhong发布了新的文献求助10
20秒前
CodeCraft应助虎虎虎采纳,获得10
20秒前
鲨鱼辣椒完成签到,获得积分10
21秒前
传奇3应助遥感小虫采纳,获得10
22秒前
时尚初柳完成签到,获得积分10
22秒前
科研通AI5应助seven采纳,获得10
23秒前
23秒前
23秒前
小咩发布了新的文献求助10
23秒前
量子星尘发布了新的文献求助10
23秒前
Konien完成签到 ,获得积分10
28秒前
C57的狂想发布了新的文献求助10
28秒前
泽暖恒栖月关注了科研通微信公众号
29秒前
30秒前
31秒前
小蘑菇应助安兮采纳,获得10
32秒前
daisy_chen完成签到,获得积分10
36秒前
刘奇完成签到 ,获得积分10
36秒前
36秒前
37秒前
遥感小虫发布了新的文献求助10
37秒前
高分求助中
(禁止应助)【重要!!请各位详细阅读】【科研通的精品贴汇总】 10000
Organic Chemistry 1500
The Netter Collection of Medical Illustrations: Digestive System, Volume 9, Part III - Liver, Biliary Tract, and Pancreas (3rd Edition) 600
Introducing Sociology Using the Stuff of Everyday Life 400
Conjugated Polymers: Synthesis & Design 400
Picture Books with Same-sex Parented Families: Unintentional Censorship 380
Metals, Minerals, and Society 300
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 4260103
求助须知:如何正确求助?哪些是违规求助? 3792910
关于积分的说明 11896388
捐赠科研通 3440611
什么是DOI,文献DOI怎么找? 1888248
邀请新用户注册赠送积分活动 938973
科研通“疑难数据库(出版商)”最低求助积分说明 844349