ChatGPT-based meta-analysis for evaluating the temporal and spatial characteristics of deoxynivalenol contamination in Chinese wheat

污染 环境科学 呕吐毒素 环境化学 环境工程 真菌毒素 玉米赤霉烯酮 化学 生物技术 生物 生态学
作者
Chuanzhi Jiang,S. X. Li,Di Cai,Jin Ye,Qinghang Bao,Cuiling Liu,Songxue Wang
出处
期刊:Journal of Hazardous Materials [Elsevier BV]
卷期号:480: 135888-135888
标识
DOI:10.1016/j.jhazmat.2024.135888
摘要

Deoxynivalenol (DON) is a major source of mycotoxins in wheat. However, there is a lack of systematic reporting of the overall contamination status in China, hindering comprehensive assessments. In this study, we utilized a meta-analysis approach based on ChatGPT to systematically analyze DON contamination in wheat-growing regions in China, as reported in the literature from 2010 to 2021. By optimizing the query processes and refining the methodology keywords using ChatGPT, efficient screening, data identification, and literature extraction were achieved for the first time during the meta-analysis data acquisition phase. The matching rates for the screening and extraction of 1091 articles were 100 % and 95.4 %, respectively, resulting in a 20.5-fold work efficiency increase compared to that by manual operations. Meta-subgroup analysis by province and year revealed significant spatiotemporal heterogeneity in DON contamination in the wheat-growing regions of China. Furthermore, the relationship between climate factors and DON levels in wheat was investigated to illustrate the spatial and temporal heterogeneity of DON in Chinese wheat. The results showed that DON concentrations were mainly influenced by relative humidity and precipitation during the wheat-growing season. This novel ChatGPT-assisted meta-analysis approach provides valuable insights and offers a promising method for efficient meta-analyses in other fields.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
桐桐应助老宋采纳,获得10
3秒前
4秒前
朱莉完成签到,获得积分10
6秒前
SciGPT应助zimi采纳,获得10
8秒前
9秒前
无限的马里奥完成签到,获得积分10
9秒前
淡淡紫山发布了新的文献求助30
10秒前
11秒前
11秒前
11秒前
Jane发布了新的文献求助30
11秒前
11秒前
12秒前
16秒前
16秒前
火星上宛秋完成签到 ,获得积分10
16秒前
小4完成签到,获得积分10
17秒前
17秒前
科研通AI5应助锂离子采纳,获得10
17秒前
galioo3000发布了新的文献求助30
17秒前
宁为树发布了新的文献求助10
17秒前
思源应助安静的难破采纳,获得10
17秒前
18秒前
从容羽毛发布了新的文献求助10
18秒前
19秒前
20秒前
111发布了新的文献求助10
21秒前
科研通AI2S应助科研通管家采纳,获得10
22秒前
Owen应助科研通管家采纳,获得10
22秒前
英姑应助科研通管家采纳,获得10
23秒前
乐乐应助科研通管家采纳,获得10
23秒前
JamesPei应助科研通管家采纳,获得10
23秒前
打打应助科研通管家采纳,获得30
23秒前
Hanne应助科研通管家采纳,获得10
23秒前
甜甜醉波应助科研通管家采纳,获得20
23秒前
DADA应助科研通管家采纳,获得10
23秒前
肖博文发布了新的文献求助10
23秒前
Ava应助科研通管家采纳,获得10
23秒前
彭于晏应助科研通管家采纳,获得10
23秒前
赘婿应助科研通管家采纳,获得10
23秒前
高分求助中
【此为提示信息,请勿应助】请按要求发布求助,避免被关 20000
Continuum Thermodynamics and Material Modelling 2000
Encyclopedia of Geology (2nd Edition) 2000
105th Edition CRC Handbook of Chemistry and Physics 1600
Maneuvering of a Damaged Navy Combatant 650
Mixing the elements of mass customisation 300
the MD Anderson Surgical Oncology Manual, Seventh Edition 300
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3778058
求助须知:如何正确求助?哪些是违规求助? 3323749
关于积分的说明 10215625
捐赠科研通 3038921
什么是DOI,文献DOI怎么找? 1667711
邀请新用户注册赠送积分活动 798361
科研通“疑难数据库(出版商)”最低求助积分说明 758339