生物
肠沙门氏菌
殖民地化
殖民抵抗
代谢组
沙门氏菌
微生物学
病菌
丁酸盐
肠道菌群
毒力
粪便
代谢物
细菌
发酵
遗传学
食品科学
免疫学
生物化学
基因
作者
Andrew W. Rogers,Lauren C. Radlinski,Henry Nguyen,Connor R. Tiffany,Thaynara Parente de Carvalho,Hugo L. P. Masson,Michael L. Goodson,Lalita Bechtold,Kohei Yamazaki,Megan J. Liou,Brittany Miller,Scott P. Mahan,Briana M. Young,Aurore Demars,Sophie R Gretler,Anaïs Larabi,Jee‐Yon Lee,Derek J. Bays,Renée M. Tsolis,Andreas J. Bäumler
标识
DOI:10.1016/j.chom.2024.07.025
摘要
The gut microbiota prevents harmful microbes from entering the body, a function known as colonization resistance. The enteric pathogen Salmonella enterica serovar (S.) Typhimurium uses its virulence factors to break colonization resistance through unknown mechanisms. Using metabolite profiling and genetic analysis, we show that the initial rise in luminal pathogen abundance was powered by a combination of aerobic respiration and mixed acid fermentation of simple sugars, such as glucose, which resulted in their depletion from the metabolome. The initial rise in the abundance of the pathogen in the feces coincided with a reduction in the cecal concentrations of acetate and butyrate and an increase in epithelial oxygenation. Notably, these changes in the host environment preceded changes in the microbiota composition. We conclude that changes in the host environment can weaken colonization resistance even in the absence of overt compositional changes in the gut microbiota.
科研通智能强力驱动
Strongly Powered by AbleSci AI