AI‐powered visual diagnosis of vulvar lichen sclerosus: A pilot study

医学 小阴唇 人工智能 皮肤病科 外阴 计算机科学
作者
Philippe Gottfrois,Jie Zhu,Alexandra Steiger,Ludovic Amruthalingam,André B. Kind,Viola Heinzelmann,C. Mang,Alexander A. Navarini,Simon M. Mueller
出处
期刊:Journal of The European Academy of Dermatology and Venereology [Wiley]
卷期号:38 (12): 2280-2285 被引量:1
标识
DOI:10.1111/jdv.20306
摘要

Abstract Background Vulvar lichen sclerosus (VLS) is a chronic inflammatory skin condition associated with significant impairment of quality of life and potential risk of malignant transformation. However, diagnosis of VLS is often delayed due to its variable clinical presentation and shame‐related late consultation. Machine learning (ML)‐trained image recognition software could potentially facilitate early diagnosis of VLS. Objective To develop a ML‐trained image‐based model for the detection of VLS. Methods Images of both VLS and non‐VLS anogenital skin were collected, anonymized, and selected. In the VLS images, 10 typical skin signs (whitening, hyperkeratosis, purpura/ecchymosis, erosion/ulcers/excoriation, erythema, labial fusion, narrowing of the introitus, labia minora resorption, posterior commissure (fourchette) band formation and atrophic shiny skin) were manually labelled. A deep convolutional neural network was built using the training set as input data and then evaluated using the test set, where the developed algorithm was run three times and the results were then averaged. Results A total of 684 VLS images and 403 non‐VLS images (70% healthy vulva and 30% with other vulvar diseases) were included after the selection process. A deep learning algorithm was developed by training on 775 images (469 VLS and 306 non‐VLS) and testing on 312 images (215 VLS and 97 non‐VLS). This algorithm performed accurately in discriminating between VLS and non‐VLS cases (including healthy individuals and non‐VLS dermatoses), with mean values of 0.94, 0.99 and 0.95 for recall, precision and accuracy, respectively. Conclusions This pilot project demonstrated that our image‐based deep learning model can effectively discriminate between VLS and non‐VLS skin, representing a promising tool for future use by clinicians and possibly patients. However, prospective studies are needed to validate the applicability and accuracy of our model in a real‐world setting.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
俭朴依白完成签到,获得积分10
1秒前
小狗说好运来完成签到 ,获得积分10
1秒前
2秒前
JamesPei应助天真千易采纳,获得20
2秒前
林思完成签到,获得积分10
4秒前
涵泽发布了新的文献求助10
4秒前
科研通AI2S应助jlwang采纳,获得10
4秒前
5秒前
5秒前
kuiuLinvk发布了新的文献求助30
7秒前
Orange应助qqy采纳,获得10
11秒前
JIANG发布了新的文献求助30
11秒前
吴大语完成签到,获得积分10
12秒前
12秒前
14秒前
希望天下0贩的0应助涵泽采纳,获得10
15秒前
科研通AI5应助可爱山彤采纳,获得10
16秒前
蜡笔小z发布了新的文献求助10
16秒前
17秒前
ruby30完成签到,获得积分10
17秒前
kuiuLinvk完成签到,获得积分10
17秒前
顾矜应助cocoa345采纳,获得10
17秒前
科研通AI5应助小豆包采纳,获得10
18秒前
20秒前
丘比特应助yshog采纳,获得10
20秒前
XL完成签到,获得积分10
20秒前
buciying发布了新的文献求助10
21秒前
24秒前
24秒前
25秒前
热心市民应助蜡笔小z采纳,获得10
25秒前
26秒前
科研通AI5应助Nelson采纳,获得10
27秒前
27秒前
27秒前
jenningseastera应助虚心黄蜂采纳,获得10
27秒前
28秒前
28秒前
29秒前
科研通AI5应助wise111采纳,获得10
29秒前
高分求助中
Basic Discrete Mathematics 1000
Technologies supporting mass customization of apparel: A pilot project 600
Introduction to Strong Mixing Conditions Volumes 1-3 500
Tip60 complex regulates eggshell formation and oviposition in the white-backed planthopper, providing effective targets for pest control 400
A Field Guide to the Amphibians and Reptiles of Madagascar - Frank Glaw and Miguel Vences - 3rd Edition 400
China Gadabouts: New Frontiers of Humanitarian Nursing, 1941–51 400
The Healthy Socialist Life in Maoist China, 1949–1980 400
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3799181
求助须知:如何正确求助?哪些是违规求助? 3344881
关于积分的说明 10322160
捐赠科研通 3061343
什么是DOI,文献DOI怎么找? 1680214
邀请新用户注册赠送积分活动 806919
科研通“疑难数据库(出版商)”最低求助积分说明 763451