Automatic Design of Deep Graph Neural Networks With Decoupled Mode

计算机科学 图形 人工神经网络 深层神经网络 模式(计算机接口) 人工智能 理论计算机科学 人机交互
作者
Qian Tao,Rongshen Cai,Zicheng Lin,Yufei Tang
出处
期刊:IEEE transactions on neural networks and learning systems [Institute of Electrical and Electronics Engineers]
卷期号:: 1-13
标识
DOI:10.1109/tnnls.2024.3438609
摘要

Graph neural networks (GNNs), a class of deep learning models designed for performing information interaction on non-Euclidean graph data, have been successfully applied to node classification tasks in various applications such as citation networks, recommender systems, and natural language processing. Graph node classification is an important research field for node-level tasks in graph data mining. Recently, due to the limitations of shallow GNNs, many researchers have focused on designing deep graph learning models. Previous GNN architecture search works only solve shallow networks (e.g., less than four layers). It is challenging and nonefficient to manually design deep GNNs for challenges like over-smoothing and information squeezing, which greatly limits their capabilities on large-scale graph data. In this article, we propose a novel neural architecture search (NAS) method for designing deep GNNs automatically and further exploit the application potential on various node classification tasks. Our innovations lie in two aspects, where we first redesign the deep GNNs search space for architecture search with a decoupled mode based on propagation and transformation processes, and we then formulate and solve the problem as a multiobjective optimization to balance accuracy and computational efficiency. Experiments on benchmark graph datasets show that our method performs very well on various node classification tasks, and exploiting large-scale graph datasets further validates that our proposed method is scalable.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
1秒前
兴奋的定帮应助WeiBao采纳,获得10
1秒前
小鞠佩奇发布了新的文献求助10
1秒前
刺猬完成签到,获得积分10
1秒前
1秒前
wanci应助道松先生采纳,获得10
2秒前
合适否而非完成签到,获得积分10
2秒前
2秒前
心平气和完成签到,获得积分10
3秒前
笨笨若山完成签到,获得积分10
3秒前
3秒前
shanmao发布了新的文献求助10
3秒前
五梁液完成签到 ,获得积分20
4秒前
円桑发布了新的文献求助10
4秒前
无限的板栗完成签到,获得积分10
4秒前
Mingyue123完成签到,获得积分10
4秒前
suqiongwu完成签到,获得积分10
5秒前
希望天下0贩的0应助zcy采纳,获得10
5秒前
茶柠完成签到 ,获得积分10
5秒前
结实裙子发布了新的文献求助10
5秒前
5秒前
共享精神应助KAKIN采纳,获得10
6秒前
6秒前
6秒前
研友_VZG7GZ应助狂野的勒采纳,获得30
6秒前
6秒前
榴莲发布了新的文献求助10
7秒前
NexusExplorer应助程之杭采纳,获得10
7秒前
共享精神应助顺心的巨人采纳,获得10
8秒前
自觉的小凝完成签到,获得积分20
9秒前
10秒前
承序发布了新的文献求助10
10秒前
道松先生发布了新的文献求助10
11秒前
月下荷花发布了新的文献求助10
11秒前
机灵紫萱完成签到,获得积分10
12秒前
12秒前
鸣隐完成签到,获得积分10
13秒前
13秒前
14秒前
14秒前
高分求助中
Picture Books with Same-sex Parented Families: Unintentional Censorship 1000
A new approach to the extrapolation of accelerated life test data 1000
ACSM’s Guidelines for Exercise Testing and Prescription, 12th edition 500
Nucleophilic substitution in azasydnone-modified dinitroanisoles 500
不知道标题是什么 500
Indomethacinのヒトにおける経皮吸収 400
Phylogenetic study of the order Polydesmida (Myriapoda: Diplopoda) 370
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 3979040
求助须知:如何正确求助?哪些是违规求助? 3522910
关于积分的说明 11215440
捐赠科研通 3260392
什么是DOI,文献DOI怎么找? 1799938
邀请新用户注册赠送积分活动 878751
科研通“疑难数据库(出版商)”最低求助积分说明 807060