亲爱的研友该休息了!由于当前在线用户较少,发布求助请尽量完整的填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!身体可是革命的本钱,早点休息,好梦!

Meta-model structural monitoring with cutting-edge AAE-VMD fusion alongside optimized machine learning methods

人工智能 计算机科学 机器学习 学习迁移 超参数 降维 水准点(测量) 粒子群优化 极限学习机 模式识别(心理学) 人工神经网络 大地测量学 地理
作者
Sahar Hassani
出处
期刊:Structural Health Monitoring-an International Journal [SAGE Publishing]
被引量:1
标识
DOI:10.1177/14759217241263954
摘要

Transfer learning significantly enhances machine learning by leveraging knowledge from one dataset to boost performance on another, which is particularly beneficial when labelled data ares limited or costly. Sensor fusion, an essential technique in structural health monitoring, improves the effectiveness of transfer learning by combining data from multiple sensors to extract more informative features. This article proposes a novel meta-model structural monitoring using a new data fusion method named the adversarial autoencoder (AAE)–variational mode decomposition (VMD) algorithm, which integrates optimization algorithms, transfer learning, and machine learning techniques for damage detection tasks. The proposed meta-model combines transfer learning with an optimized machine learning framework for training and employs pretrained models for testing across diverse datasets. First, the tensors are fused using the AAE approach into 300 data points, reducing noise and outliers, performing dimensionality reduction, and enriching the training and test datasets. Then, a preprocessing step involves decomposing and denoising tensors using the VMD algorithm, followed by selecting the most informative intrinsic mode functions (IMFs) based on their variance. These selected IMFs are concatenated, and 13 statistical features are extracted from them and used as inputs for machine learning models. Various optimization algorithms are employed to fine-tune the hyperparameters of the machine learning models for optimal classification results. Validation of this meta-model utilizes the dataset collected from a steel grandstand structure, available in benchmark dataset format. For decomposed fused tensors, both particle swarm optimization and covariance matrix adaptation evolution strategy emerge as equally effective optimization techniques for K-nearest neighbours (KNN), consistently achieving the highest mean test accuracy and F1 score of 99.5%. Conversely, KNN stands out as a robust and reliable classification algorithm for denoised fused tensors in transfer learning classification problems, consistently demonstrating perfect accuracy and an F1 score of 1.0 ± 0.0 across all optimization techniques.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
zhouleiwang发布了新的文献求助10
3秒前
住在魔仙堡的鱼完成签到 ,获得积分10
7秒前
8秒前
繁星完成签到,获得积分20
11秒前
bingbing发布了新的文献求助10
13秒前
打工人不酷完成签到 ,获得积分10
13秒前
酷炫橘子完成签到,获得积分10
13秒前
深情安青应助麦斯采纳,获得10
14秒前
麦斯完成签到,获得积分10
18秒前
23秒前
24秒前
26秒前
义气如萱发布了新的文献求助10
28秒前
小宋同学不能怂完成签到 ,获得积分10
31秒前
31秒前
32秒前
32秒前
繁星发布了新的文献求助10
35秒前
39秒前
带你去喝雪碧完成签到,获得积分10
44秒前
情怀应助李渤海采纳,获得10
47秒前
48秒前
leslie完成签到 ,获得积分10
55秒前
55秒前
zho应助岁月轮回采纳,获得10
57秒前
筱筱发布了新的文献求助10
1分钟前
9999完成签到 ,获得积分10
1分钟前
Nirvan完成签到,获得积分10
1分钟前
852应助多味花生采纳,获得10
1分钟前
情怀应助Nirvan采纳,获得10
1分钟前
筱筱完成签到 ,获得积分10
1分钟前
陳.完成签到 ,获得积分10
1分钟前
吹皱一湖春水完成签到 ,获得积分10
1分钟前
丫丫完成签到 ,获得积分10
1分钟前
不将就完成签到,获得积分10
1分钟前
liang完成签到 ,获得积分10
1分钟前
彭于晏应助科研通管家采纳,获得10
1分钟前
丘比特应助科研通管家采纳,获得30
1分钟前
科研通AI5应助11122采纳,获得10
1分钟前
有魅力天抒完成签到 ,获得积分10
1分钟前
高分求助中
【此为提示信息,请勿应助】请按要求发布求助,避免被关 20000
Continuum Thermodynamics and Material Modelling 2000
Encyclopedia of Geology (2nd Edition) 2000
105th Edition CRC Handbook of Chemistry and Physics 1600
Maneuvering of a Damaged Navy Combatant 650
Периодизация спортивной тренировки. Общая теория и её практическое применение 310
Mixing the elements of mass customisation 300
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3779050
求助须知:如何正确求助?哪些是违规求助? 3324712
关于积分的说明 10219547
捐赠科研通 3039767
什么是DOI,文献DOI怎么找? 1668404
邀请新用户注册赠送积分活动 798648
科研通“疑难数据库(出版商)”最低求助积分说明 758487