Genetic Algorithms with Neural Cost Predictor for Solving Hierarchical Vehicle Routing Problems

遗传算法 车辆路径问题 人工神经网络 布线(电子设计自动化) 计算机科学 算法 数学优化 运筹学 机器学习 工程类 数学 计算机网络
作者
Abhay Sobhanan,Junyoung Park,Jinkyoo Park,Changhyun Kwon
出处
期刊:Transportation Science [Institute for Operations Research and the Management Sciences]
卷期号:59 (2): 322-339 被引量:11
标识
DOI:10.1287/trsc.2023.0369
摘要

When vehicle routing decisions are intertwined with higher-level decisions, the resulting optimization problems pose significant challenges for computation. Examples are the multi-depot vehicle routing problem (MDVRP), where customers are assigned to depots before delivery, and the capacitated location routing problem (CLRP), where the locations of depots should be determined first. A simple and straightforward approach for such hierarchical problems would be to separate the higher-level decisions from the complicated vehicle routing decisions. For each higher-level decision candidate, we may evaluate the underlying vehicle routing problems to assess the candidate. As this approach requires solving vehicle routing problems multiple times, it has been regarded as impractical in most cases. We propose a novel deep learning-based approach called the genetic algorithm with neural cost predictor to tackle the challenge and simplify algorithm developments. For each higher-level decision candidate, we predict the objective function values of the underlying vehicle routing problems using a pretrained graph neural network without actually solving the routing problems. In particular, our proposed neural network learns the objective values of the HGS-CVRP open-source package that solves capacitated vehicle routing problems. Our numerical experiments show that this simplified approach is effective and efficient in generating high-quality solutions for both MDVRP and CLRP and that it has the potential to expedite algorithm developments for complicated hierarchical problems. We provide computational results evaluated in the standard benchmark instances used in the literature. History: This paper has been accepted for the Transportation Science Special Issue on TSL Conference 2023. Funding: This research was funded by the National Research Foundation of Korea [Grant RS-2023-00259550]. Supplemental Material: The online appendix is available at https://doi.org/10.1287/trsc.2023.0369 .
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
1秒前
ZCYBEYOND完成签到 ,获得积分10
1秒前
2秒前
soso发布了新的文献求助10
2秒前
2秒前
Jasper应助Jorna采纳,获得10
2秒前
BowieHuang应助科研通管家采纳,获得10
3秒前
浮游应助科研通管家采纳,获得10
3秒前
无花果应助科研通管家采纳,获得10
3秒前
无极微光应助科研通管家采纳,获得20
3秒前
科研通AI6应助科研通管家采纳,获得10
3秒前
传奇3应助科研通管家采纳,获得10
3秒前
隐形曼青应助科研通管家采纳,获得10
3秒前
李爱国应助科研通管家采纳,获得10
3秒前
充电宝应助科研通管家采纳,获得10
4秒前
情怀应助科研通管家采纳,获得10
4秒前
斯文败类应助科研通管家采纳,获得10
4秒前
Akim应助科研通管家采纳,获得10
4秒前
科研通AI2S应助科研通管家采纳,获得10
4秒前
科研通AI6应助科研通管家采纳,获得10
4秒前
田様应助科研通管家采纳,获得10
4秒前
4秒前
Orange应助科研通管家采纳,获得10
4秒前
科研通AI2S应助科研通管家采纳,获得10
4秒前
科研通AI6应助努力毕业采纳,获得10
4秒前
动听的笑南完成签到,获得积分10
4秒前
研友_VZG7GZ应助科研通管家采纳,获得10
4秒前
4秒前
4秒前
5秒前
任任发布了新的文献求助10
6秒前
量子星尘发布了新的文献求助10
6秒前
7秒前
乐乐应助俊逸亦云采纳,获得10
7秒前
7秒前
开放的玉米完成签到,获得积分10
8秒前
9秒前
OoO完成签到,获得积分10
9秒前
xxvvxx发布了新的文献求助10
9秒前
Lucas应助干净听双采纳,获得10
9秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
List of 1,091 Public Pension Profiles by Region 1581
Encyclopedia of Agriculture and Food Systems Third Edition 1500
以液相層析串聯質譜法分析糖漿產品中活性雙羰基化合物 / 吳瑋元[撰] = Analysis of reactive dicarbonyl species in syrup products by LC-MS/MS / Wei-Yuan Wu 1000
Lloyd's Register of Shipping's Approach to the Control of Incidents of Brittle Fracture in Ship Structures 800
Biology of the Reptilia. Volume 21. Morphology I. The Skull and Appendicular Locomotor Apparatus of Lepidosauria 600
Pediatric Nutrition 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 遗传学 催化作用 冶金 量子力学 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 5548297
求助须知:如何正确求助?哪些是违规求助? 4633600
关于积分的说明 14631740
捐赠科研通 4575228
什么是DOI,文献DOI怎么找? 2508884
邀请新用户注册赠送积分活动 1485127
关于科研通互助平台的介绍 1456139