Personalized Model Identification for Glucose Dynamics from Clinical Data with Incomplete Inputs

鉴定(生物学) 计算机科学 数据建模 动力学(音乐) 系统标识 人工智能 生物 物理 声学 植物 数据库
作者
Başak Özaslan,Eleonora M. Aiello,Emilia Fushimi,Francis J. Doyle,Eyal Dassau
出处
期刊:IEEE Transactions on Biomedical Engineering [Institute of Electrical and Electronics Engineers]
卷期号:: 1-12
标识
DOI:10.1109/tbme.2025.3530711
摘要

A common challenge in model identification with clinical data is incomplete and sometimes imprecise information. In this work, we provide a method to reconstruct the corrupted input data in a clinical dataset and, jointly identify the person-specific parameters of a metabolic model describing meal-insulin-glucose-dynamics for people with type 1 diabetes (T1D). The proposed method is an algorithm that iterates between nonlinear least-squares and mixed-integer quadratic programming to optimize model parameters in conjunction with sparse corrections to the input data. In order to handle long stretches of data, the optimization problem is designed to be i) computationally tractable, and ii) robust against the potential presence of significant inaccuracies corrupting a data portion. Moreover, since the pattern of the inaccuracies is specific to each person, we propose a personalized hyperparameter tuning approach. The method is applied on clinical data from 13 people with T1D. Identified model performance is compared to the performance of model identified with standard least squares (LS) method. Compared to LS, identifying corrections in conjunction with model parameters on training data lead to an improvement in the model prediction capabilities on unseen data with an average 2.2% improvement in MARD for two-hour prediction horizon (p-value = 0.0006). The proposed method is effective in model identification for clinical data with unknown inaccuracies in the inputs. Personalized models with high accuracy can inform treatment decisions and lead to better glucose control outcomes in people with T1D.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
future完成签到 ,获得积分10
刚刚
勤恳凌丝完成签到,获得积分10
3秒前
小伙子发布了新的文献求助10
3秒前
Ciwas发布了新的文献求助10
3秒前
stacy完成签到,获得积分10
3秒前
sonic应助月绛采纳,获得10
6秒前
7秒前
小九完成签到,获得积分10
8秒前
cheng完成签到,获得积分10
10秒前
10秒前
10秒前
11秒前
李爱国应助健壮的怜烟采纳,获得10
12秒前
刘大妮完成签到,获得积分10
14秒前
鱼与渔发布了新的文献求助10
14秒前
14秒前
我是老大应助zcx采纳,获得10
14秒前
15秒前
Cookie完成签到,获得积分20
15秒前
搜集达人应助鲤鱼水壶采纳,获得10
16秒前
斯文败类应助baozhiputao采纳,获得10
18秒前
18秒前
UT发布了新的文献求助10
19秒前
Owen应助静默向上采纳,获得10
19秒前
Synan完成签到,获得积分10
20秒前
ED应助旺仔同学采纳,获得10
21秒前
22秒前
香蕉觅云应助yiren采纳,获得10
23秒前
24秒前
25秒前
25秒前
默默洋葱发布了新的文献求助10
26秒前
26秒前
鲤鱼水壶发布了新的文献求助10
27秒前
老杜发布了新的文献求助10
27秒前
朱朱完成签到,获得积分10
28秒前
深情安青应助玉川采纳,获得10
29秒前
千宝发布了新的文献求助10
30秒前
英勇珊珊发布了新的文献求助10
31秒前
31秒前
高分求助中
Les Mantodea de Guyane: Insecta, Polyneoptera [The Mantids of French Guiana] 2500
Future Approaches to Electrochemical Sensing of Neurotransmitters 1000
生物降解型栓塞微球市场(按产品类型、应用和最终用户)- 2030 年全球预测 1000
壮语核心名词的语言地图及解释 900
Digital predistortion of memory polynomial systems using direct and indirect learning architectures 500
Canon of Insolation and the Ice-age Problem 380
Phylogenetic study of the order Polydesmida (Myriapoda: Diplopoda) 360
热门求助领域 (近24小时)
化学 医学 材料科学 生物 工程类 有机化学 生物化学 物理 内科学 计算机科学 纳米技术 复合材料 化学工程 遗传学 基因 物理化学 催化作用 光电子学 量子力学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 3916223
求助须知:如何正确求助?哪些是违规求助? 3461772
关于积分的说明 10918784
捐赠科研通 3188577
什么是DOI,文献DOI怎么找? 1762704
邀请新用户注册赠送积分活动 853123
科研通“疑难数据库(出版商)”最低求助积分说明 793649