亲爱的研友该休息了!由于当前在线用户较少,发布求助请尽量完整的填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!身体可是革命的本钱,早点休息,好梦!

Visual Navigation and Crop Mapping of a Phenotyping Robot Mars-Phenobot in Simulation

计算机科学 人工智能 计算机视觉 全球导航卫星系统应用 人口 机器人 全球定位系统 电信 人口学 社会学
作者
Zhengkun Li,Rui Xu,Changying Li,Longsheng Fu
标识
DOI:10.2139/ssrn.5093760
摘要

AbstractCultivating high-yield and high-quality crops is important for addressing the growing demand for food and fiber from an increasing population. In selective breeding programs, autonomous robotic systems have proved to have great potential to replace manual phenotypic trait measurements which are time-consuming and labor-intensive. In this paper, we presented a Robot Operating System (ROS)-based phenotyping robot, MARS-PhenoBot, and demonstrated its visual navigation and field mapping capacities in the Gazebo simulation environment. MARS-PhenoBot was a solar-powered modular platform with a four-wheel steering and four-wheel driving configuration. We developed a navigation strategy that fuses multiple cameras to guide the robot to follow crop rows and transition between them, enabling visual navigation across the entire field without relying on global GNSS signals. Three row-detection algorithms, including thresholding-based, detection-based, and segmentation-based methods, were compared and evaluated in simulated crop fields with discontinuous and continuous crop rows, as well as with and without the presence of weeds. The results demonstrated that the segmentation-based method achieved the lowest average cross-track errors, measuring 2.5 cm for discontinuous scenarios and 0.8 cm for continuous scenarios in row detection. Additionally, a field mapping workflow based on RTAB-MAP (Real-Time Appearance-Based Mapping) and V-SLAM (Visual Simultaneous Localization and Mapping) was developed. The workflow produced the 2D maps identifying crop and weed locations, as well as 3D models represented as point clouds for crop shapes and structures. Using this mapping workflow, the average crop localization error was measured at 6.4 cm, primarily caused by the visual odometry drift. The generated point clouds of crops could support further phenotyping analyses, such as crop height/diameter measurements and leaf counting. The methodology developed in this study could be transferred to real-world robots that are capable of automated robotic phenotyping for in-field crops, providing an effective tool for accelerating selective breeding programs.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
11秒前
张张发布了新的文献求助10
16秒前
努力努力再努力完成签到,获得积分10
25秒前
张张发布了新的文献求助10
28秒前
123完成签到,获得积分10
58秒前
张张完成签到,获得积分10
1分钟前
BA1完成签到 ,获得积分10
1分钟前
张张发布了新的文献求助10
2分钟前
科研通AI2S应助Sience采纳,获得10
2分钟前
2分钟前
张张发布了新的文献求助10
2分钟前
大模型应助张张采纳,获得10
3分钟前
跳跳虎完成签到 ,获得积分10
4分钟前
mashibeo完成签到,获得积分10
4分钟前
4分钟前
科研通AI2S应助科研通管家采纳,获得10
5分钟前
欢呼半山完成签到 ,获得积分10
5分钟前
精明玲完成签到 ,获得积分10
5分钟前
科研通AI5应助科研通管家采纳,获得10
7分钟前
DYXX完成签到 ,获得积分10
9分钟前
科研通AI2S应助科研通管家采纳,获得10
9分钟前
科研通AI5应助科研通管家采纳,获得10
9分钟前
斯文的难破完成签到 ,获得积分10
9分钟前
美好的鸽子完成签到,获得积分10
9分钟前
10分钟前
hank完成签到 ,获得积分10
10分钟前
10分钟前
alex_zhao完成签到,获得积分10
10分钟前
10分钟前
10分钟前
张张发布了新的文献求助10
10分钟前
11分钟前
张张发布了新的文献求助10
11分钟前
MartinaLZ应助张张采纳,获得10
11分钟前
科研通AI2S应助张张采纳,获得10
11分钟前
可爱的函函应助张张采纳,获得10
11分钟前
满意访冬完成签到,获得积分20
12分钟前
12分钟前
科研通AI5应助满意访冬采纳,获得10
12分钟前
渡己完成签到 ,获得积分10
12分钟前
高分求助中
【此为提示信息,请勿应助】请按要求发布求助,避免被关 20000
ISCN 2024 – An International System for Human Cytogenomic Nomenclature (2024) 3000
Continuum Thermodynamics and Material Modelling 2000
Encyclopedia of Geology (2nd Edition) 2000
105th Edition CRC Handbook of Chemistry and Physics 1600
Maneuvering of a Damaged Navy Combatant 650
the MD Anderson Surgical Oncology Manual, Seventh Edition 300
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3777609
求助须知:如何正确求助?哪些是违规求助? 3322969
关于积分的说明 10212809
捐赠科研通 3038316
什么是DOI,文献DOI怎么找? 1667308
邀请新用户注册赠送积分活动 798103
科研通“疑难数据库(出版商)”最低求助积分说明 758229