Multicenter Double-Blind Study Evaluating AI-Driven Detection of Proximal Deep Vein Thrombosis

深静脉 血栓形成 多中心研究 医学 放射科 外科 随机对照试验
作者
Nicola Curry,Elisa Allen,Laura Silsby,Steve Goodacre,Christopher Deane,Alison Deary,Ashley Foster,James Griffiths,Rupa Sharma,Helen Thomas,Sven Mischewitz,Fouad Al-Noor
标识
DOI:10.1056/aioa2400741
摘要

BackgroundUltrasound is one of the most widely requested forms of diagnostic imaging. The costs for diagnosing deep vein thrombosis (DVT) in the UK are £175 million, annually. In at least 80% of cases, DVT is excluded. As health care provision becomes increasingly stretched, resource utilization needs to be optimized. This prospective, double-blind, test accuracy study was designed to test whether an artificial intelligence (AI)–guided software device (AutoDVT) could support nonradiology specialists to diagnose proximal DVT.MethodsEleven regional hospital DVT diagnostic clinics enrolled adult patients, 18 years of age or older, who were referred for investigation of symptoms suggestive of DVT, including a compression ultrasound. Prior to the clinical compression ultrasound, an AutoDVT scan was completed. This was a two-point AI-guided compression ultrasound scan. We found that the main primary outcome was the sensitivity of AutoDVT within a diagnostic algorithm for the detection of proximal DVT by nonradiology-trained staff. Other outcomes included specificity and positive/negative predictive value of AutoDVT.ResultsA total of 414 participants were enrolled. Proximal DVT was detected in 10.5% of those analyzed. AutoDVT resulted in 68% sensitivity (95% confidence interval [CI], 49 to 83%) and 80% specificity (95% CI, 74 to 85%) for the detection of proximal DVT. The negative predictive value for AutoDVT was 95% (95% CI, 92 to 98%), with a positive predictive value of 28% (95% CI, 19 to 40%). Overall, 63 out of 294 results (21%; 95% CI, 17 to 27%) were discrepant compared with compression ultrasound.ConclusionsThough AI-guided ultrasound use can detect proximal DVT, test accuracy was not sufficient for this device to be used safely. Further optimization of the software is required prior to use in clinical practice by nonradiology-trained health care professionals. (Funded by the Wellcome Trust [Wellcome Innovator Award 220505/Z/20/Z]. The trial was registered as ISRCTN 11069056.)
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
任梓宁应助Mengyue采纳,获得30
刚刚
liz发布了新的文献求助20
刚刚
传奇3应助踏实的碧空采纳,获得10
1秒前
大模型应助兴奋元冬采纳,获得10
2秒前
3秒前
hebhm发布了新的文献求助10
3秒前
leo完成签到,获得积分10
4秒前
4秒前
魁梧的仰发布了新的文献求助10
4秒前
顾矜应助一朵云采纳,获得10
5秒前
5秒前
6秒前
7秒前
鱼儿完成签到,获得积分10
7秒前
我想静静应助lei采纳,获得10
8秒前
自觉巨人应助lilili采纳,获得10
9秒前
曾经冰露发布了新的文献求助10
10秒前
10秒前
冷傲的山菡完成签到,获得积分10
10秒前
11发布了新的文献求助10
10秒前
11秒前
lllym发布了新的文献求助10
12秒前
12秒前
llllllu发布了新的文献求助30
12秒前
菲菲公主完成签到 ,获得积分10
13秒前
魁梧的仰完成签到,获得积分10
13秒前
hyq完成签到,获得积分10
14秒前
OVERLXRD完成签到,获得积分10
15秒前
白潇潇发布了新的文献求助10
15秒前
16秒前
四憙完成签到 ,获得积分10
16秒前
HEIKU应助ywhys采纳,获得10
17秒前
冷傲的xu发布了新的文献求助10
17秒前
大个应助zhang采纳,获得10
18秒前
小蘑菇应助lllym采纳,获得10
18秒前
llllllu完成签到,获得积分20
18秒前
19秒前
无序之光关注了科研通微信公众号
19秒前
爆米花应助11采纳,获得10
20秒前
高分求助中
ФОРМИРОВАНИЕ АО "МЕЖДУНАРОДНАЯ КНИГА" КАК ВАЖНЕЙШЕЙ СИСТЕМЫ ОТЕЧЕСТВЕННОГО КНИГОРАСПРОСТРАНЕНИЯ 3000
Les Mantodea de Guyane: Insecta, Polyneoptera [The Mantids of French Guiana] 2500
Future Approaches to Electrochemical Sensing of Neurotransmitters 1000
Electron microscopy study of magnesium hydride (MgH2) for Hydrogen Storage 1000
Finite Groups: An Introduction 800
Research on WLAN scenario optimisation policy based on IoT smart campus 500
生物降解型栓塞微球市场(按产品类型、应用和最终用户)- 2030 年全球预测 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3905716
求助须知:如何正确求助?哪些是违规求助? 3450983
关于积分的说明 10863349
捐赠科研通 3176390
什么是DOI,文献DOI怎么找? 1754832
邀请新用户注册赠送积分活动 848529
科研通“疑难数据库(出版商)”最低求助积分说明 791050