Dementia and MCI Detection Based on Comprehensive Facial Expression Analysis From Videos During Conversation

痴呆 计算机科学 面部表情 人工智能 接收机工作特性 人脸检测 唤醒 对话 特征提取 语音识别 心理学 机器学习 面部识别系统 医学 沟通 疾病 神经科学 病理
作者
Taichi Okunishi,Chuheng Zheng,Mondher Bouazizi,Tomoaki Ohtsuki,Momoko Kitazawa,Toshiro Horigome,Taishiro Kishimoto
出处
期刊:IEEE Journal of Biomedical and Health Informatics [Institute of Electrical and Electronics Engineers]
卷期号:: 1-12 被引量:2
标识
DOI:10.1109/jbhi.2025.3526553
摘要

The development of a cost-effective digital biomarker for detecting dementia is highly needed. While numerous studies have explored dementia detection through speech and natural language analysis, only a few studies have focused on dementia detection using face video recordings, and more in-depth research is needed. In this paper, we propose a method for detecting dementia and mild cognitive impairment (MCI), a pre-dementia stage, by utilizing four types of facial expression features extracted from recorded videos of participants. These features include Action Units, emotion categories, Valence-Arousal, and face embeddings. From the above features obtained from each video frame, various statistical information was extracted and used as features, and predictions were performed using a decision tree-based model. Our method was evaluated using face video recordings during conversations. The method achieved an area under the receiver operating characteristic curve (AUC) of 0.933 for dementia detection and 0.889 for MCI detection. Statistical analysis of facial expression features revealed that participants with dementia had fewer positive emotions, more negative emotions, and lower valence and arousal than healthy participants. These results indicate that the proposed method could serve as an explainable screening tool for the early detection of dementia and MCI.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
万能图书馆应助yu采纳,获得10
1秒前
研友_85YNe8发布了新的文献求助30
1秒前
3秒前
4秒前
情怀应助李杰采纳,获得10
5秒前
欢呼的棒棒糖完成签到,获得积分10
5秒前
法鼎勘发布了新的文献求助10
6秒前
香蕉觅云应助Bunny采纳,获得10
7秒前
爆米花应助风清扬采纳,获得10
7秒前
Martina发布了新的文献求助10
8秒前
janie完成签到,获得积分10
10秒前
10秒前
无花果应助SmoonYK采纳,获得30
13秒前
彭于晏应助啵啵采纳,获得10
17秒前
JamesPei应助mont采纳,获得10
19秒前
研友_85YNe8完成签到,获得积分10
19秒前
yu完成签到,获得积分10
22秒前
22秒前
核桃给可乐的求助进行了留言
25秒前
25秒前
haha完成签到,获得积分10
25秒前
27秒前
pxm1277发布了新的文献求助10
30秒前
badyoungboy完成签到,获得积分10
31秒前
31秒前
顾矜应助123321采纳,获得10
32秒前
32秒前
Lh发布了新的文献求助10
32秒前
alvin关注了科研通微信公众号
32秒前
33秒前
沉静丹寒发布了新的文献求助10
34秒前
35秒前
36秒前
Martina完成签到,获得积分10
37秒前
西瓜妹完成签到,获得积分10
37秒前
zwhy579发布了新的文献求助10
37秒前
安静的雨完成签到,获得积分10
38秒前
Lee发布了新的文献求助20
38秒前
39秒前
Yr发布了新的文献求助10
39秒前
高分求助中
(禁止应助)【重要!!请各位详细阅读】【科研通的精品贴汇总】 10000
Semantics for Latin: An Introduction 1099
Biology of the Indian Stingless Bee: Tetragonula iridipennis Smith 1000
Robot-supported joining of reinforcement textiles with one-sided sewing heads 760
2024-2030年中国石英材料行业市场竞争现状及未来趋势研判报告 500
镇江南郊八公洞林区鸟类生态位研究 500
Thermal Quadrupoles: Solving the Heat Equation through Integral Transforms 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 4148176
求助须知:如何正确求助?哪些是违规求助? 3684646
关于积分的说明 11641854
捐赠科研通 3378492
什么是DOI,文献DOI怎么找? 1854095
邀请新用户注册赠送积分活动 916477
科研通“疑难数据库(出版商)”最低求助积分说明 830341