结直肠癌
免疫疗法
化疗
适应(眼睛)
钒
癌症研究
兴奋剂
医学
癌症
材料科学
内科学
生物
光电子学
冶金
神经科学
作者
Qian Cheng,Yu‐Zhe Chen,Danyi Zou,Qilin Li,Xiaolei Shi,Qiang Qin,Miaodeng Liu,Lin Wang,Zheng Wang
标识
DOI:10.1002/advs.202409329
摘要
The anti-tumor efficacy of current pharmacotherapy is severely hampered due to the adaptive evolution of tumors, urgently needing effective therapeutic strategies capable of breaking such adaptability. Metabolic reprogramming, as an adaptive survival mechanism, is closely related to therapy resistance of tumors. Colorectal cancer (CRC) cells exhibit a high energy dependency that is sustained by an adaptive metabolic conversion between glucose and glutamine, helping tumor cells to withstand nutrient-deficient microenvironments and various treatments. We discover that transition metal vanadium (V) effectively inhibits glucose metabolism in CRC and synergizes with glutaminase inhibitors (BPTES) to disrupt CRC's energy dependency. Thus, a dual energy metabolism suppression nanosystem (VSi-BP@HA) is engineered by loading BPTES into V-doped hollow mesoporous silica nanoparticles. This nanosystem effectively dampens CRC energy metabolism, eradicating 33% of tumors in mice. Strikingly, the cell biological and preclinical model datasets provide compelling evidence showing that VSi-BP@HA not only reverses CRC cells chemo-resistance but also drastically potentiates anti-PD1 immunotherapy. Therefore, this nanosystem provides not only a promising approach to suppress CRC, but also a potential adjunct tool for enhancing chemotherapy and immunotherapy.
科研通智能强力驱动
Strongly Powered by AbleSci AI