Mitochondria-associated programmed cell death: elucidating prognostic biomarkers, immune checkpoints, and therapeutic avenues in multiple myeloma

列线图 比例危险模型 肿瘤科 接收机工作特性 多发性骨髓瘤 生存分析 医学 免疫系统 内科学 生物信息学 生物 免疫学
作者
Gongzhizi Gao,Jiyu Miao,Yachun Jia,Aili He
出处
期刊:Frontiers in Immunology [Frontiers Media]
卷期号:15
标识
DOI:10.3389/fimmu.2024.1448764
摘要

Background Multiple myeloma (MM) is a hematological malignancy characterized by the abnormal proliferation of plasma cells. Mitochondrial dysfunction and dysregulated programmed cell death (PCD) pathways have been implicated in MM pathogenesis. However, the precise roles of mitochondria-related genes (MRGs) and PCD-related genes (PCDRGs) in MM prognosis remain unclear. Methods Transcriptomic data from MM patients and healthy controls were analyzed to identify differentially expressed genes (DEGs). Candidate genes were selected by intersecting DEGs with curated lists of MRGs and PCDRGs. Univariate Cox, least absolute shrinkage and selection operator (LASSO), multivariate Cox, and stepwise regression analyses identified prognostic genes among the candidates. A risk model was constructed from these genes, and patients were stratified into high- and low-risk groups for survival analysis. Independent prognostic factors were incorporated into a nomogram to predict MM patient outcomes. Model performance was evaluated using calibration curves, receiver operating characteristic (ROC) analysis, and decision curve analysis (DCA). Finally, associations between prognostic genes and immune cell infiltration/drug responses were explored. Results 2,192 DEGs were detected between MM and control samples. 30 candidate genes were identified at the intersection of DEGs, 1,136 MRGs, and 1,548 PCDRGs. TRIAP1, TOMM7, PINK1, CHCHD10, PPIF, BCL2L1 , and NDUFA13 were selected as prognostic genes. The risk model stratified patients into high- and low-risk groups with significantly different survival probabilities. Age, gender, ISS stage, and risk score were independent prognostic factors. The nomogram displayed good calibration and discriminative ability (AUC) in predicting survival, with clinical utility demonstrated by DCA. 9 immune cell types showed differential infiltration between MM and controls, with significant associations to risk scores and specific prognostic genes. 57 drugs, including nelarabine and vorinostat, were predicted to interact with the prognostic genes. Ultimately, qPCR in clinical samples from MM patients and healthy donors validated the expression levels of the seven key prognostic genes, corroborating the bioinformatic findings. Conclusion Seven genes ( TRIAP1, TOMM7, PINK1, CHCHD10, PPIF, BCL2L1, NDUFA13 ) involved in mitochondrial function and PCD pathways were identified as prognostic markers in MM. These findings provide insights into MM biology and prognosis, highlighting potential therapeutic targets.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
1秒前
希望天下0贩的0应助laochen采纳,获得10
7秒前
7秒前
英姑应助fnunu采纳,获得10
11秒前
16秒前
18秒前
冰魂应助奉宣室以何年采纳,获得10
19秒前
yangjinru完成签到 ,获得积分10
19秒前
21秒前
席田兰发布了新的文献求助10
22秒前
22秒前
解师完成签到,获得积分20
23秒前
laochen发布了新的文献求助10
23秒前
健壮问兰完成签到 ,获得积分10
24秒前
24秒前
stitch发布了新的文献求助10
25秒前
笑嘻嘻完成签到,获得积分10
26秒前
27秒前
研友_CCQ_M完成签到,获得积分10
28秒前
比大家发布了新的文献求助10
30秒前
卡卡完成签到,获得积分10
33秒前
科研通AI5应助加菲丰丰采纳,获得10
34秒前
大力的百合完成签到,获得积分10
35秒前
共享精神应助席田兰采纳,获得10
39秒前
xulin完成签到 ,获得积分10
40秒前
dochx完成签到,获得积分10
41秒前
NexusExplorer应助书记采纳,获得10
45秒前
46秒前
47秒前
充电宝应助医学小王采纳,获得10
50秒前
LZY发布了新的文献求助10
50秒前
活力寄凡发布了新的文献求助10
52秒前
万能图书馆应助宁静致远采纳,获得10
55秒前
LZY完成签到,获得积分10
55秒前
慈祥的晓蓝完成签到 ,获得积分10
57秒前
58秒前
58秒前
1分钟前
kchrisuzad完成签到,获得积分10
1分钟前
轻松的吐司应助活力寄凡采纳,获得10
1分钟前
高分求助中
【此为提示信息,请勿应助】请按要求发布求助,避免被关 20000
ISCN 2024 – An International System for Human Cytogenomic Nomenclature (2024) 3000
Continuum Thermodynamics and Material Modelling 2000
Encyclopedia of Geology (2nd Edition) 2000
105th Edition CRC Handbook of Chemistry and Physics 1600
Maneuvering of a Damaged Navy Combatant 650
Mindfulness and Character Strengths: A Practitioner's Guide to MBSP 380
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3776524
求助须知:如何正确求助?哪些是违规求助? 3322078
关于积分的说明 10208657
捐赠科研通 3037336
什么是DOI,文献DOI怎么找? 1666647
邀请新用户注册赠送积分活动 797596
科研通“疑难数据库(出版商)”最低求助积分说明 757878