Gradient Driven Physics Informed Neural Networks for Conduction Heat Transfer and Incompressible Laminar Flow

作者
Qilin Liu,Xiaoyu Jiang
出处
期刊:Journal of Computational and Nonlinear Dynamics [ASME International]
卷期号:: 1-18
标识
DOI:10.1115/1.4070545
摘要

Abstract Physics-Informed Neural Networks (PINNs) have opened new possibilities for solving partial differential equations (PDEs) by embedding physical laws directly into the learning process. However, despite their flexibility, traditional PINNs often struggle to capture sharp gradients and intricate solution features, which limits their effectiveness in many practical problems. In this work, we have introduced Gradient-Driven Physics-Informed Neural Networks (GDPINNs) that improve the ability of traditional PINNs to resolve sharp gradients. By incorporating gradient information directly into the loss function, GDPINNs better target regions where traditional PINNs typically fail. We validated the method on steady-state and transient heat conduction problems, including a central heating source and a sinusoidal boundary condition, and found strong agreement with reference solutions. To further understand the framework's capability, we applied it to a high-gradient steady-state and transient heat conduction problem, where GDPINNs show clear advantages over traditional PINNs and align closely with reference results. We also extended GDPINNs to incompressible laminar flow in a lid-driven cavity, demonstrating its broader applicability. In these cases, GDPINNs consistently provide higher accuracy and better capture critical solution features, highlighting their potential to improve PINNs-based approaches for complex physical problems with sharp gradients.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
水星摸鱼完成签到,获得积分10
2秒前
清脆靳发布了新的文献求助10
7秒前
星辰大海应助云水雾心采纳,获得10
8秒前
8秒前
8秒前
香蕉觅云应助李晨旭采纳,获得10
9秒前
科研通AI2S应助暖吱采纳,获得10
10秒前
思源应助77采纳,获得10
12秒前
一百度黑发布了新的文献求助10
13秒前
段醒醒发布了新的文献求助10
14秒前
bkagyin应助Jere采纳,获得20
17秒前
18秒前
一百度黑完成签到,获得积分10
22秒前
浮游应助lxl采纳,获得10
22秒前
27秒前
浮游应助科研通管家采纳,获得10
28秒前
Mic应助科研通管家采纳,获得10
28秒前
在水一方应助科研通管家采纳,获得30
28秒前
所所应助科研通管家采纳,获得10
28秒前
28秒前
Mic应助科研通管家采纳,获得10
28秒前
Zx_1993应助科研通管家采纳,获得20
28秒前
Lucas应助科研通管家采纳,获得10
28秒前
浮游应助科研通管家采纳,获得10
28秒前
Mic应助科研通管家采纳,获得10
28秒前
FashionBoy应助科研通管家采纳,获得10
28秒前
斯文败类应助科研通管家采纳,获得10
28秒前
Zx_1993应助科研通管家采纳,获得20
28秒前
Mic应助科研通管家采纳,获得10
28秒前
Mic应助科研通管家采纳,获得10
28秒前
BowieHuang应助科研通管家采纳,获得10
28秒前
李爱国应助科研通管家采纳,获得10
28秒前
大模型应助科研通管家采纳,获得30
28秒前
共享精神应助科研通管家采纳,获得20
28秒前
shhoing应助科研通管家采纳,获得10
28秒前
星辰大海应助科研通管家采纳,获得10
28秒前
浮游应助科研通管家采纳,获得10
29秒前
29秒前
yang完成签到,获得积分20
29秒前
qwer发布了新的文献求助10
33秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
List of 1,091 Public Pension Profiles by Region 1601
Lloyd's Register of Shipping's Approach to the Control of Incidents of Brittle Fracture in Ship Structures 800
Biology of the Reptilia. Volume 21. Morphology I. The Skull and Appendicular Locomotor Apparatus of Lepidosauria 620
A Guide to Genetic Counseling, 3rd Edition 500
Laryngeal Mask Anesthesia: Principles and Practice. 2nd ed 500
The Composition and Relative Chronology of Dynasties 16 and 17 in Egypt 500
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5557634
求助须知:如何正确求助?哪些是违规求助? 4642696
关于积分的说明 14668874
捐赠科研通 4584158
什么是DOI,文献DOI怎么找? 2514615
邀请新用户注册赠送积分活动 1488842
关于科研通互助平台的介绍 1459533