Does phylogeny matter? Assessing the impact of phylogenetic information in ecological meta‐analysis

生态学 系统发育学 系统发育树 生物 地理 进化生物学 基因 生物化学
作者
Scott Chamberlain,Stephen M. Hovick,Christopher Dibble,Nick L. Rasmussen,Benjamin G. Van Allen,Brian Maitner,Jeffrey R. Ahern,Lukas Bell‐Dereske,Christopher L. Roy,Maria M. Meza‐Lopez,Juli Carrillo,Evan Siemann,Marc J. Lajeunesse,Kenneth D. Whitney
出处
期刊:Ecology Letters [Wiley]
卷期号:15 (6): 627-636 被引量:170
标识
DOI:10.1111/j.1461-0248.2012.01776.x
摘要

Meta-analysis is increasingly used in ecology and evolutionary biology. Yet, in these fields this technique has an important limitation: phylogenetic non-independence exists among taxa, violating the statistical assumptions underlying traditional meta-analytic models. Recently, meta-analytical techniques incorporating phylogenetic information have been developed to address this issue. However, no syntheses have evaluated how often including phylogenetic information changes meta-analytic results. To address this gap, we built phylogenies for and re-analysed 30 published meta-analyses, comparing results for traditional vs. phylogenetic approaches and assessing which characteristics of phylogenies best explained changes in meta-analytic results and relative model fit. Accounting for phylogeny significantly changed estimates of the overall pooled effect size in 47% of datasets for fixed-effects analyses and 7% of datasets for random-effects analyses. Accounting for phylogeny also changed whether those effect sizes were significantly different from zero in 23 and 40% of our datasets (for fixed- and random-effects models, respectively). Across datasets, decreases in pooled effect size magnitudes after incorporating phylogenetic information were associated with larger phylogenies and those with stronger phylogenetic signal. We conclude that incorporating phylogenetic information in ecological meta-analyses is important, and we provide practical recommendations for doing so.

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
1秒前
1秒前
略略略啦啦啦关注了科研通微信公众号
1秒前
2秒前
舒物发布了新的文献求助10
2秒前
2秒前
orixero应助彬墩墩采纳,获得20
2秒前
斯文败类应助anitamui采纳,获得10
3秒前
田様应助逍遥客采纳,获得10
4秒前
Larry发布了新的文献求助10
4秒前
lili发布了新的文献求助10
5秒前
LaInh完成签到,获得积分10
6秒前
Owen应助Yanan_Z采纳,获得30
6秒前
CodeCraft应助LQX采纳,获得10
7秒前
emilia发布了新的文献求助10
7秒前
额度完成签到,获得积分20
7秒前
8秒前
monere发布了新的文献求助10
8秒前
9秒前
喝杯水再走完成签到,获得积分10
9秒前
11秒前
11秒前
Ava应助科研通管家采纳,获得10
12秒前
文艺千柳应助科研通管家采纳,获得10
12秒前
文艺千柳应助科研通管家采纳,获得10
12秒前
12秒前
CodeCraft应助科研通管家采纳,获得10
12秒前
慕青应助科研通管家采纳,获得10
12秒前
浦肯野应助科研通管家采纳,获得20
12秒前
英姑应助科研通管家采纳,获得10
12秒前
天天快乐应助科研通管家采纳,获得10
12秒前
英姑应助科研通管家采纳,获得10
12秒前
CipherSage应助科研通管家采纳,获得10
12秒前
乐乐应助科研通管家采纳,获得10
12秒前
星辰大海应助科研通管家采纳,获得10
12秒前
科研通AI6应助科研通管家采纳,获得10
12秒前
科研通AI6应助科研通管家采纳,获得10
12秒前
传奇3应助科研通管家采纳,获得10
12秒前
fifteen应助科研通管家采纳,获得10
13秒前
文艺千柳应助科研通管家采纳,获得10
13秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
高温高圧下融剤法によるダイヤモンド単結晶の育成と不純物の評価 5000
苏州地下水中新污染物及其转化产物的非靶向筛查 500
Rapid Review of Electrodiagnostic and Neuromuscular Medicine: A Must-Have Reference for Neurologists and Physiatrists 500
Vertebrate Palaeontology, 5th Edition 500
ISO/IEC 24760-1:2025 Information security, cybersecurity and privacy protection — A framework for identity management 500
碳捕捉技术能效评价方法 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 内科学 生物化学 物理 计算机科学 纳米技术 遗传学 基因 复合材料 化学工程 物理化学 病理 催化作用 免疫学 量子力学
热门帖子
关注 科研通微信公众号,转发送积分 4726429
求助须知:如何正确求助?哪些是违规求助? 4083629
关于积分的说明 12629637
捐赠科研通 3790089
什么是DOI,文献DOI怎么找? 2093051
邀请新用户注册赠送积分活动 1118819
科研通“疑难数据库(出版商)”最低求助积分说明 995288