光学相干层析成像
分割
计算机科学
人工智能
Dijkstra算法
最短路径问题
计算机视觉
光学层析成像
图形
图像分割
模式识别(心理学)
光学
迭代重建
物理
理论计算机科学
作者
Brenton Keller,David Cunefare,Dilraj S. Grewal,Tamer H. Mahmoud,Joseph A. Izatt,Sina Farsiu
标识
DOI:10.1117/1.jbo.21.7.076015
摘要
We introduce a metric in graph search and demonstrate its application for segmenting retinal optical coherence tomography (OCT) images of macular pathology. Our proposed "adjusted mean arc length" (AMAL) metric is an adaptation of the lowest mean arc length search technique for automated OCT segmentation. We compare this method to Dijkstra's shortest path algorithm, which we utilized previously in our popular graph theory and dynamic programming segmentation technique. As an illustrative example, we show that AMAL-based length-adaptive segmentation outperforms the shortest path in delineating the retina/vitreous boundary of patients with full-thickness macular holes when compared with expert manual grading.
科研通智能强力驱动
Strongly Powered by AbleSci AI