Machine learning in mental health: a scoping review of methods and applications

心理健康 潜在Dirichlet分配 大数据 机器学习 心理学 支持向量机 临床决策支持系统 领域(数学) 应用心理学 人工智能 数据科学 计算机科学 医学 精神科 主题模型 数据挖掘 决策支持系统 纯数学 数学
作者
Adrian Shatte,Delyse Hutchinson,Samantha Teague
出处
期刊:Psychological Medicine [Cambridge University Press]
卷期号:49 (09): 1426-1448 被引量:656
标识
DOI:10.1017/s0033291719000151
摘要

Abstract Background This paper aims to synthesise the literature on machine learning (ML) and big data applications for mental health, highlighting current research and applications in practice. Methods We employed a scoping review methodology to rapidly map the field of ML in mental health. Eight health and information technology research databases were searched for papers covering this domain. Articles were assessed by two reviewers, and data were extracted on the article's mental health application, ML technique, data type, and study results. Articles were then synthesised via narrative review. Results Three hundred papers focusing on the application of ML to mental health were identified. Four main application domains emerged in the literature, including: (i) detection and diagnosis; (ii) prognosis, treatment and support; (iii) public health, and; (iv) research and clinical administration. The most common mental health conditions addressed included depression, schizophrenia, and Alzheimer's disease. ML techniques used included support vector machines, decision trees, neural networks, latent Dirichlet allocation, and clustering. Conclusions Overall, the application of ML to mental health has demonstrated a range of benefits across the areas of diagnosis, treatment and support, research, and clinical administration. With the majority of studies identified focusing on the detection and diagnosis of mental health conditions, it is evident that there is significant room for the application of ML to other areas of psychology and mental health. The challenges of using ML techniques are discussed, as well as opportunities to improve and advance the field.

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
FashionBoy应助zyf采纳,获得10
刚刚
刚刚
陈佳欣发布了新的文献求助10
刚刚
Hermione发布了新的文献求助10
刚刚
奋斗语柳完成签到,获得积分20
刚刚
斯文败类应助小努力采纳,获得10
1秒前
1秒前
月亮完成签到,获得积分10
1秒前
深情安青应助doctorbba采纳,获得30
2秒前
科研通AI2S应助YuF采纳,获得10
2秒前
3秒前
4秒前
糯米团完成签到,获得积分10
4秒前
牛奶加咖啡完成签到,获得积分10
4秒前
小景007完成签到,获得积分10
4秒前
Orange应助小赞采纳,获得30
5秒前
超帅的怡发布了新的文献求助10
5秒前
1234完成签到,获得积分10
5秒前
布吉岛呀发布了新的文献求助10
6秒前
6秒前
lala发布了新的文献求助10
7秒前
申贺臣发布了新的文献求助10
8秒前
活泼的番茄完成签到,获得积分10
9秒前
9秒前
充电宝应助风yiya采纳,获得10
9秒前
10秒前
10秒前
Akim应助小张采纳,获得10
10秒前
飞飞完成签到,获得积分10
10秒前
11秒前
Hermione完成签到,获得积分10
11秒前
11秒前
超帅的怡完成签到,获得积分10
11秒前
12秒前
zzz完成签到,获得积分10
12秒前
13秒前
14秒前
ufofly730完成签到 ,获得积分10
14秒前
搜集达人应助不爱喝可乐采纳,获得10
14秒前
说书人发布了新的文献求助10
15秒前
高分求助中
Technologies supporting mass customization of apparel: A pilot project 600
Introduction to Strong Mixing Conditions Volumes 1-3 500
China—Art—Modernity: A Critical Introduction to Chinese Visual Expression from the Beginning of the Twentieth Century to the Present Day 430
Tip60 complex regulates eggshell formation and oviposition in the white-backed planthopper, providing effective targets for pest control 400
A Field Guide to the Amphibians and Reptiles of Madagascar - Frank Glaw and Miguel Vences - 3rd Edition 400
China Gadabouts: New Frontiers of Humanitarian Nursing, 1941–51 400
The Healthy Socialist Life in Maoist China, 1949–1980 400
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3797758
求助须知:如何正确求助?哪些是违规求助? 3343236
关于积分的说明 10315046
捐赠科研通 3059985
什么是DOI,文献DOI怎么找? 1679200
邀请新用户注册赠送积分活动 806411
科研通“疑难数据库(出版商)”最低求助积分说明 763150