已入深夜,您辛苦了!由于当前在线用户较少,发布求助请尽量完整地填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!祝你早点完成任务,早点休息,好梦!

Experimental Comparisons of Clustering Approaches for Data Representation

聚类分析 计算机科学 数据挖掘 理论(学习稳定性) 集合(抽象数据类型) 数据集 代表(政治) CURE数据聚类算法 机器学习 相关聚类 算法 人工智能 政治 政治学 法学 程序设计语言
作者
Sanjay Kumar Anand,Suresh Kumar
出处
期刊:ACM Computing Surveys [Association for Computing Machinery]
卷期号:55 (3): 1-33 被引量:36
标识
DOI:10.1145/3490384
摘要

Clustering approaches are extensively used by many areas such as IR, Data Integration, Document Classification, Web Mining, Query Processing, and many other domains and disciplines. Nowadays, much literature describes clustering algorithms on multivariate data sets. However, there is limited literature that presented them with exhaustive and extensive theoretical analysis as well as experimental comparisons. This experimental survey paper deals with the basic principle, and techniques used, including important characteristics, application areas, run-time performance, internal, external, and stability validity of cluster quality, etc., on five different data sets of eleven clustering algorithms. This paper analyses how these algorithms behave with five different multivariate data sets in data representation. To answer this question, we compared the efficiency of eleven clustering approaches on five different data sets using three validity metrics-internal, external, and stability and found the optimal score to know the feasible solution of each algorithm. In addition, we have also included four popular and modern clustering algorithms with only their theoretical discussion. Our experimental results for only traditional clustering algorithms showed that different algorithms performed different behavior on different data sets in terms of running time (speed), accuracy and, the size of data set. This study emphasized the need for more adaptive algorithms and a deliberate balance between the running time and accuracy with their theoretical as well as implementation aspects.

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
斯文败类应助HF7采纳,获得10
1秒前
酷波er应助知足的憨人*-*采纳,获得10
3秒前
zhanzhanzhan发布了新的文献求助10
4秒前
ming完成签到,获得积分20
5秒前
6秒前
8秒前
超帅的心锁完成签到,获得积分20
9秒前
Dyying应助Achange采纳,获得10
9秒前
等待若山发布了新的文献求助10
10秒前
jietaocn完成签到 ,获得积分10
11秒前
ab发布了新的文献求助10
13秒前
14秒前
小白又鹏发布了新的文献求助10
14秒前
排骨炖豆角完成签到 ,获得积分10
16秒前
等待若山完成签到,获得积分10
20秒前
21秒前
科研通AI2S应助yang采纳,获得30
24秒前
小白又鹏完成签到,获得积分10
25秒前
27秒前
SAN关闭了SAN文献求助
29秒前
七年发布了新的文献求助10
30秒前
阿童木完成签到 ,获得积分10
32秒前
SciGPT应助bbbabo采纳,获得10
33秒前
xff关闭了xff文献求助
34秒前
m(_._)m完成签到 ,获得积分0
35秒前
40秒前
共享精神应助nn采纳,获得10
40秒前
共享精神应助开朗的尔风采纳,获得30
43秒前
btsforever完成签到 ,获得积分10
44秒前
bbbabo发布了新的文献求助10
45秒前
Mental完成签到,获得积分10
45秒前
今后应助读书的时候采纳,获得30
46秒前
张晓娜完成签到 ,获得积分10
46秒前
sisyphus_yy完成签到 ,获得积分10
48秒前
专注的芷完成签到 ,获得积分10
49秒前
量子星尘发布了新的文献求助10
54秒前
开朗的尔风完成签到,获得积分20
55秒前
chuenchow完成签到,获得积分10
56秒前
57秒前
星辰大海应助TOF采纳,获得10
57秒前
高分求助中
Semantics for Latin: An Introduction 1055
Genomic signature of non-random mating in human complex traits 1000
Plutonium Handbook 1000
Three plays : drama 1000
Robot-supported joining of reinforcement textiles with one-sided sewing heads 600
SPSS for Windows Step by Step: A Simple Study Guide and Reference, 17.0 Update (10th Edition) 500
Multimodal injustices: Speech acts, gender bias, and speaker’s status 400
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 4104844
求助须知:如何正确求助?哪些是违规求助? 3642662
关于积分的说明 11541508
捐赠科研通 3350556
什么是DOI,文献DOI怎么找? 1840911
邀请新用户注册赠送积分活动 907801
科研通“疑难数据库(出版商)”最低求助积分说明 824964