电化学
催化作用
电解
阴极
碳酸氢盐
化学
传质
制氢
膜
氢
无机化学
化学工程
电极
色谱法
有机化学
物理化学
电解质
工程类
生物化学
作者
Eric W. Lees,Justin C. Bui,Datong Song,Adam Z. Weber,Curtis P. Berlinguette
出处
期刊:ACS energy letters
[American Chemical Society]
日期:2022-01-25
卷期号:7 (2): 834-842
被引量:62
标识
DOI:10.1021/acsenergylett.1c02522
摘要
Bicarbonate electrolyzers are devices designed to convert CO2 captured from point sources or the atmosphere into chemicals and fuels without needing to first isolate pure CO2 gas. We report here an experimentally validated model that quantifies the reaction chemistry and mass transfer processes within the catalyst layer and cation exchange membrane layer of a bicarbonate electrolyzer. Our results demonstrate that two distinct chemical microenvironments are key to forming CO at high rates: an acidic membrane layer that promotes in situ CO2 formation and a basic catalyst layer that suppresses the hydrogen evolution reaction. We show that the rate of CO product formation can be increased by modulating the catalyst and membrane layer properties to increase the rate of in situ CO2 generation and transport to the cathode. These insights serve to inform the design of bicarbonate and BPM-based CO2 electrolyzers while demonstrating the value of modeling for resolving rate-determining processes in electrochemical systems.
科研通智能强力驱动
Strongly Powered by AbleSci AI