亲爱的研友该休息了!由于当前在线用户较少,发布求助请尽量完整地填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!身体可是革命的本钱,早点休息,好梦!

SparseVoxNet: 3-D Object Recognition With Sparsely Aggregation of 3-D Dense Blocks

点云 计算机科学 人工智能 体素 对象(语法) 卷积神经网络 模式识别(心理学) 特征(语言学) 体积热力学 视觉对象识别的认知神经科学 代表(政治) 点(几何) 人工神经网络 计算机视觉 数学 量子力学 几何学 政治 物理 语言学 哲学 法学 政治学
作者
Ahmad Karambakhsh,Bin Sheng,Ping Li,Huating Li,Jinman Kim,Younhyun Jung,C. L. Philip Chen
出处
期刊:IEEE transactions on neural networks and learning systems [Institute of Electrical and Electronics Engineers]
卷期号:35 (1): 532-546 被引量:40
标识
DOI:10.1109/tnnls.2022.3175775
摘要

Automatic recognition of 3-D objects in a 3-D model by convolutional neural network (CNN) methods has been successfully applied to various tasks, e.g., robotics and augmented reality. Three-dimensional object recognition is mainly performed by analyzing the object using multi-view images, depth images, graphs, or volumetric data. In some cases, using volumetric data provides the most promising results. However, existing recognition techniques on volumetric data have many drawbacks, such as losing object details on converting points to voxels and the large size of the input volume data that leads to substantial 3-D CNNs. Using point clouds could also provide very promising results; however, point-cloud-based methods typically need sparse data entry and time-consuming training stages. Thus, using volumetric could be a more efficient and flexible recognizer for our special case in the School of Medicine, Shanghai Jiao Tong University. In this article, we propose a novel solution to 3-D object recognition from volumetric data using a combination of three compact CNN models, low-cost SparseNet, and feature representation technique. We achieve an optimized network by estimating extra geometrical information comprising the surface normal and curvature into two separated neural networks. These two models provide supplementary information to each voxel data that consequently improve the results. The primary network model takes advantage of all the predicted features and uses these features in Random Forest (RF) for recognition purposes. Our method outperforms other methods in training speed in our experiments and provides an accurate result as good as the state-of-the-art.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
浮游应助科研通管家采纳,获得10
4秒前
浮游应助科研通管家采纳,获得10
4秒前
4秒前
浮游应助科研通管家采纳,获得10
4秒前
华仔应助LukeLion采纳,获得10
8秒前
9秒前
英俊的铭应助LukeLion采纳,获得10
23秒前
11发布了新的文献求助10
24秒前
34秒前
35秒前
40秒前
过氧化氢发布了新的文献求助10
44秒前
我是老大应助欢喜的若灵采纳,获得10
49秒前
11发布了新的文献求助10
56秒前
57秒前
1分钟前
1分钟前
1分钟前
11发布了新的文献求助10
1分钟前
1分钟前
幽默的绝悟完成签到,获得积分20
1分钟前
追寻夜香完成签到 ,获得积分10
1分钟前
gtgyh发布了新的文献求助10
1分钟前
欢喜的若灵完成签到,获得积分10
1分钟前
清新的灵寒完成签到 ,获得积分10
1分钟前
1分钟前
11发布了新的文献求助10
1分钟前
浮游应助科研通管家采纳,获得10
2分钟前
浮游应助科研通管家采纳,获得10
2分钟前
浮游应助科研通管家采纳,获得10
2分钟前
浮游应助科研通管家采纳,获得10
2分钟前
今后应助废久采纳,获得10
2分钟前
寻道图强应助ljj001ljj采纳,获得50
2分钟前
kshuizhuyu发布了新的文献求助10
2分钟前
Frank应助舒适焦采纳,获得10
2分钟前
2分钟前
慕青应助kshuizhuyu采纳,获得10
2分钟前
octavia完成签到,获得积分10
2分钟前
11发布了新的文献求助10
2分钟前
2分钟前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
List of 1,091 Public Pension Profiles by Region 1561
Current Trends in Drug Discovery, Development and Delivery (CTD4-2022) 800
Foregrounding Marking Shift in Sundanese Written Narrative Segments 600
Holistic Discourse Analysis 600
Beyond the sentence: discourse and sentential form / edited by Jessica R. Wirth 600
Science of Synthesis: Houben–Weyl Methods of Molecular Transformations 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 遗传学 催化作用 冶金 量子力学 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 5522699
求助须知:如何正确求助?哪些是违规求助? 4613657
关于积分的说明 14539118
捐赠科研通 4551368
什么是DOI,文献DOI怎么找? 2494224
邀请新用户注册赠送积分活动 1475142
关于科研通互助平台的介绍 1446542