gBOIN‐ET: The generalized Bayesian optimal interval design for optimal dose‐finding accounting for ordinal graded efficacy and toxicity in early clinical trials

临床试验 医学 置信区间 贝叶斯概率 最大耐受剂量 肿瘤科 毒性 内科学 数学 统计
作者
Kentaro Takeda,Satoshi Morita,Masataka Taguri
出处
期刊:Biometrical Journal [Wiley]
卷期号:64 (7): 1178-1191 被引量:8
标识
DOI:10.1002/bimj.202100263
摘要

One of the primary objectives of an oncology dose-finding trial for novel therapies, such as molecular targeted agents and immune-oncology therapies, is to identify an optimal dose (OD) that is tolerable and therapeutically beneficial for subjects in subsequent clinical trials. These new therapeutic agents appear more likely to induce multiple low- or moderate-grade toxicities than dose-limiting toxicities. Besides, efficacy should be evaluated as an overall response and stable disease in solid tumors and the difference between complete remission and partial remission in lymphoma. This paper proposes the generalized Bayesian optimal interval design for dose-finding accounting for efficacy and toxicity grades. The new design, named "gBOIN-ET" design, is model-assisted, simple, and straightforward to implement in actual oncology dose-finding trials than model-based approaches. These characteristics are quite valuable in practice. A simulation study shows that the gBOIN-ET design has advantages compared with the other model-assisted designs in the percentage of correct OD selection and the average number of patients allocated to the ODs across various realistic settings.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
务实豪发布了新的文献求助10
1秒前
甜心肖宝完成签到 ,获得积分10
1秒前
脑洞疼应助Liza0711采纳,获得30
1秒前
5160完成签到,获得积分10
1秒前
Akim应助Fanfan采纳,获得10
1秒前
Lucas应助Echo采纳,获得10
3秒前
3秒前
3秒前
3秒前
今后应助务实豪采纳,获得10
5秒前
7秒前
Yolen LI完成签到,获得积分10
8秒前
安辰发布了新的文献求助10
8秒前
小蘑菇应助Season采纳,获得10
9秒前
丽丽完成签到,获得积分10
9秒前
叮叮咚咚完成签到,获得积分10
10秒前
10秒前
Liza0711完成签到,获得积分20
11秒前
13秒前
leolin完成签到,获得积分10
13秒前
cherry111完成签到,获得积分10
14秒前
ywzwszl发布了新的文献求助10
14秒前
茉莉发布了新的文献求助10
15秒前
wy.he完成签到,获得积分0
16秒前
Arthur完成签到,获得积分10
17秒前
18秒前
悦耳羽毛完成签到,获得积分10
19秒前
20秒前
ChenZM完成签到,获得积分10
21秒前
Ericlee发布了新的文献求助10
21秒前
dudu发布了新的文献求助10
22秒前
Season发布了新的文献求助10
24秒前
xulin完成签到 ,获得积分10
25秒前
段采萱发布了新的文献求助10
27秒前
烂漫草莓完成签到,获得积分20
28秒前
Ericlee完成签到,获得积分10
30秒前
Maestro_S应助90采纳,获得10
30秒前
dujinjun完成签到,获得积分10
30秒前
31秒前
31秒前
高分求助中
Les Mantodea de Guyane Insecta, Polyneoptera 2500
Technologies supporting mass customization of apparel: A pilot project 450
China—Art—Modernity: A Critical Introduction to Chinese Visual Expression from the Beginning of the Twentieth Century to the Present Day 430
A Field Guide to the Amphibians and Reptiles of Madagascar - Frank Glaw and Miguel Vences - 3rd Edition 400
China Gadabouts: New Frontiers of Humanitarian Nursing, 1941–51 400
The Healthy Socialist Life in Maoist China, 1949–1980 400
Walking a Tightrope: Memories of Wu Jieping, Personal Physician to China's Leaders 400
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3789633
求助须知:如何正确求助?哪些是违规求助? 3334559
关于积分的说明 10270626
捐赠科研通 3050998
什么是DOI,文献DOI怎么找? 1674381
邀请新用户注册赠送积分活动 802549
科研通“疑难数据库(出版商)”最低求助积分说明 760761