A Novel Deep Learning Network via Multiscale Inner Product With Locally Connected Feature Extraction for Intelligent Fault Detection

特征提取 断层(地质) 计算机科学 天线(收音机) 人工智能 故障检测与隔离 噪音(视频) 方位(导航) 深度学习 特征(语言学) 模式识别(心理学) 实时计算 电信 地震学 哲学 执行机构 语言学 图像(数学) 地质学
作者
Tongyang Pan,Jinglong Chen,Zitong Zhou,Changlei Wang,Shuilong He
出处
期刊:IEEE Transactions on Industrial Informatics [Institute of Electrical and Electronics Engineers]
卷期号:15 (9): 5119-5128 被引量:77
标识
DOI:10.1109/tii.2019.2896665
摘要

Intelligent fault detection is an important application of artificial intelligence and has been widely used in many mechanical systems. The shipborne antenna that is a typical and an important mechanical system plays an irreplaceable role in ships. Considering the tough working environment and heavy background noise, fault detection is difficult for the shipborne antenna. Therefore, the paper presents an intelligent fault detection method via multiscale inner product with locally connected feature extraction for shipborne antenna fault detection. Inspired by inner product principle, this paper takes advantage of inner product to capture fault information in the vibration signals and detect the faults in rolling bearing of the shipborne antenna. Meanwhile, multiscale analysis is employed in two layers of the network to improve the feature extraction ability. The local features under different scales are collected and used for fault classification. Finally, the proposed method is verified by three datasets and comparison methods are also developed to show its superiority. Results show that the proposed method can learn sensitive features directly from raw vibration signals and detect the faults in rolling bearing of shipborne antenna effectively.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
认真的adai完成签到,获得积分10
1秒前
holland完成签到 ,获得积分10
1秒前
1秒前
张英俊完成签到,获得积分20
1秒前
大白不白发布了新的文献求助10
2秒前
忧子忘完成签到,获得积分10
2秒前
实验体8567号完成签到,获得积分10
2秒前
2秒前
彭于晏应助Awen采纳,获得10
2秒前
屎球球完成签到,获得积分10
2秒前
3秒前
张英俊发布了新的文献求助10
4秒前
斯文败类应助武丝丝采纳,获得10
4秒前
潇洒冷菱完成签到,获得积分10
4秒前
ding应助欢喜可愁采纳,获得10
5秒前
5秒前
jj发布了新的文献求助10
5秒前
5秒前
6秒前
7秒前
8秒前
MchemG应助xiaoli245采纳,获得20
8秒前
高贵的鱼完成签到,获得积分10
8秒前
Self完成签到,获得积分10
8秒前
认真的adai发布了新的文献求助10
9秒前
tkx是流氓兔发布了新的文献求助200
9秒前
11秒前
gao发布了新的文献求助10
11秒前
sin_Lee完成签到,获得积分10
11秒前
angel发布了新的文献求助10
11秒前
遇见发布了新的文献求助10
12秒前
活泼的飞扬完成签到,获得积分10
13秒前
齐夜白完成签到,获得积分10
13秒前
Japrin完成签到,获得积分10
13秒前
顾矜应助敏感的山晴采纳,获得10
13秒前
14秒前
02完成签到,获得积分10
15秒前
shw完成签到,获得积分10
15秒前
flash完成签到,获得积分10
16秒前
Zeng完成签到,获得积分10
16秒前
高分求助中
Thinking Small and Large 500
Algorithmic Mathematics in Machine Learning 500
Getting Published in SSCI Journals: 200+ Questions and Answers for Absolute Beginners 300
The Monocyte-to-HDL ratio (MHR) as a prognostic and diagnostic biomarker in Acute Ischemic Stroke: A systematic review with meta-analysis (P9-14.010) 240
Deciphering Earth's History: the Practice of Stratigraphy 200
New Syntheses with Carbon Monoxide 200
Faber on mechanics of patent claim drafting 200
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3834177
求助须知:如何正确求助?哪些是违规求助? 3376774
关于积分的说明 10494951
捐赠科研通 3096188
什么是DOI,文献DOI怎么找? 1704868
邀请新用户注册赠送积分活动 820249
科研通“疑难数据库(出版商)”最低求助积分说明 771915