An intelligent warning model for early prediction of cardiac arrest in sepsis patients

机器学习 逻辑回归 人工智能 决策树 随机森林 支持向量机 计算机科学 预警得分 集成学习 梯度升压 败血症 预警系统 医学 内科学 急诊医学 电信
作者
Samaneh Layeghian Javan,Mohammad Mehdi Sepehri,Malihe Layeghian Javan,Toktam Khatibi
出处
期刊:Computer Methods and Programs in Biomedicine [Elsevier BV]
卷期号:178: 47-58 被引量:72
标识
DOI:10.1016/j.cmpb.2019.06.010
摘要

Sepsis-associated cardiac arrest is a common issue with the low survival rate. Early prediction of cardiac arrest can provide the time required for intervening and preventing its onset in order to reduce mortality. Several studies have been conducted to predict cardiac arrest using machine learning. However, no previous research has used machine learning for predicting cardiac arrest in adult sepsis patients. Moreover, the potential of some techniques, including ensemble algorithms, has not yet been addressed in improving the prediction outcomes. It is required to find methods for generating high-performance predictions with sufficient time lapse before the arrest. In this regard, various variables and parameters should also been examined.The aim was to use machine learning in order to propose a cardiac arrest prediction model for adult patients with sepsis. It is required to predict the arrest several hours before the incidence with high efficiency. The other goal was to investigate the effect of the time series dynamics of vital signs on the prediction of cardiac arrest.30 h clinical data of every sepsis patients were extracted from Mimic III database (79 cases, 4532 controls). Three datasets (multivariate, time series and combined) were created. Various machine learning models for six time groups were trained on these datasets. The models included classical techniques (SVM, decision tree, logistic regression, KNN, GaussianNB) and ensemble methods (gradient Boosting, XGBoost, random forest, balanced bagging classifier and stacking). Proper solutions were proposed to address the challenges of missing values, imbalanced classes of data and irregularity of time series.The best results were obtained using a stacking algorithm and multivariate dataset (accuracy = 0.76, precision = 0.19, sensitivity = 0.77, f1-score = 0.31, AUC= 0.82). The proposed model predicts the arrest incidence of up to six hours earlier with the accuracy and sensitivity over 70%.We illustrated that machine learning techniques, especially ensemble algorithms have high potentials to be used in prognostic systems for sepsis patients. The proposed model, in comparison with the exiting warning systems including APACHE II and MEWS, significantly improved the evaluation criteria. According to the results, the time series dynamics of vital signs are of great importance in the prediction of cardiac arrest incidence in sepsis patients.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
2秒前
风清扬发布了新的文献求助10
3秒前
dsdingding完成签到,获得积分10
3秒前
4秒前
shidi完成签到,获得积分10
5秒前
sludy发布了新的文献求助10
7秒前
10秒前
cy发布了新的文献求助10
11秒前
13秒前
小伟跑位发布了新的文献求助10
14秒前
14秒前
15秒前
易海之旅发布了新的文献求助10
29秒前
焱垚发布了新的文献求助10
32秒前
33秒前
kk应助sinan采纳,获得30
33秒前
37秒前
mikura发布了新的文献求助20
38秒前
Xxx完成签到,获得积分10
39秒前
Abelsci完成签到,获得积分0
41秒前
chiu发布了新的文献求助30
41秒前
42秒前
43秒前
44秒前
AMAME12发布了新的文献求助10
46秒前
48秒前
jyy应助无语采纳,获得10
48秒前
复杂凡柔发布了新的文献求助20
48秒前
48秒前
杀出个黎明举报求助违规成功
49秒前
HeAuBook举报求助违规成功
49秒前
千跃举报求助违规成功
49秒前
49秒前
Daisy发布了新的文献求助10
49秒前
51秒前
科研小狗发布了新的文献求助10
51秒前
52秒前
54秒前
葳蕤完成签到,获得积分10
55秒前
AMAME12完成签到,获得积分20
56秒前
高分求助中
Ophthalmic Equipment Market by Devices(surgical: vitreorentinal,IOLs,OVDs,contact lens,RGP lens,backflush,diagnostic&monitoring:OCT,actorefractor,keratometer,tonometer,ophthalmoscpe,OVD), End User,Buying Criteria-Global Forecast to2029 2000
A new approach to the extrapolation of accelerated life test data 1000
Cognitive Neuroscience: The Biology of the Mind 1000
Technical Brochure TB 814: LPIT applications in HV gas insulated switchgear 1000
Nucleophilic substitution in azasydnone-modified dinitroanisoles 500
不知道标题是什么 500
A Preliminary Study on Correlation Between Independent Components of Facial Thermal Images and Subjective Assessment of Chronic Stress 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 3964773
求助须知:如何正确求助?哪些是违规求助? 3510218
关于积分的说明 11152404
捐赠科研通 3244487
什么是DOI,文献DOI怎么找? 1792405
邀请新用户注册赠送积分活动 873825
科研通“疑难数据库(出版商)”最低求助积分说明 803987